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ABSTRACT 

This work addresses and evaluates the likelihood 
of human casualty in highway crashes, projected 
on the basis of field crash data that may become 
available electronically by sensors at crash time, 
andlor obsewed at the crash scene by 
emergency attendants. Termed collectively as a 
"crash signature", such data are treated as 
predictors and are selected from: crash severity, 
general area of darnage, direction of force. 
occurrence of rollover, intrusion, vehicle crush 
and its specific horizontal location, collision 
partner. vehicle class and size, occupant age. 
gender, restraint use and type, seating position, 
and other. Crash signatures are converted into 
responses such as: (a) the likelihood of the most 
severe outcome, fatality or sulvived injury, by 
severity AIS per occupant; and (b) the same per 
vehicle. Cars are the vehicles selected for this 
investigation. A likelihood is quantified by a 
probability of occurrence, as a function of a string 
of predictors selected for maximum resolution 
and sensitivity, and minimum contribution to error. 
Likelihood determinations are performed via 
maximum likelihood based logistic regressions, 
best suited for treating dichotomous responses: 
"yes or no" such and such a response or 
outcome. Each likelihood is accompanied by a 
standard error or by upper and lower confidence 
bounds, and each procedure is evaluated by 

pertinent scores. All cited procedures and 
findings are based on the data of the National 
Accident Sampling System (NASS) files 
1988-1995, compiled by the National Highway 
Traffic Safety Administration (NHTSA). This 
provides a nationally representative sample of 
about 95.000 crash involved car occupants, and 
190.000 incurred injuries. all with attributes that 
collectively encompass as a minimum the 
predictors and responses cled earlier. The 
paper provides pertinent predictive relations 
which, notwithstanding complexity, are fully 
programmable. Probabilities of specific 
outcomes may vary frorn nearly zero to virtually 
loo%, depending on circumstances. Detailed 
and illustrative findings are presented in tabular 
and graphic forms. 

INTRODUCTION 

The advent of high volume highway accident 
records, many of them nationally representative 
,and of a research caliber, addressing a broad 
spectrum of crash, vehicle, occupant, and 
casualty attributes, makes it easier now to 
address and evaluate several important issues in 
lhighway safety. 

At the same time, the wide scope and the 
complexities of the available data point to the 
~ieed for developing ways and means in order to 



capture the essential aspects of the highway 
crash environment in a succinct and insightful 
fashion. The purpose of this paper is to take a 
first cut in responding to the cited need. 

BASIC DATA 

The data compiled in the eight years, 1988-1995. 
of NASSICDS are the basic data used. The 
NASS weights, necessary for national 
projections, are used as weighing factors in any 
data processing procedure. 

Many outcomes and their severity may be 
considered individually or in combinations for the 
purpose of human casualty prediction. Also many 
crash, car, occupant, and injury attributes are in 
principle available in the accident experience to 
assist, as predic:tors, in the derivation of said 
algorithms on the basis of a crash signature. The 
number and type of predictors are often limited 
by practical considerations imposed by the type 
of contemplated applications, the strength of 
probability --predictor correlation, and by the 
amount and quality of available data for the 
derivation of the algorithms. 

NOMINAL PROCEDURE FOR TREATING THE 
RAW DATA 

In vlew of the d~chotomous nature of the 
outcomes at issue (e.g "Yes" or "No" Fatality or 
MAlS 3+) a maximum likelihood procedure. 
specifically a logistic regression with weigh~ng 
factors, is used to fit varlous algorithms to the raw 
data. Essentially, the probability of casualty is 
projected as' 

where PRED1, PRED2, etc are the selected 
predictors; and AO, A?, A2, etc are CoeMcients 
estimated by the logistic regression. 

When dealing with analyses of data from the 
NASS, it must be taken into account that this file 
contains a sample as opposed to a census of 
national data. In order to deal wlth this, the 
applicable statistical procedures are those 
prescribed in "S~urvey Data Analysis" (SUDAAN) 
software. Research Triangle Institute. Research 

Triangle Park, North Carolina, 1992. Such 
procedures are applicable in the analysis of data 
from multi-stage sample designs, like that of the 
NASS. 

ESTIMATION OF STANDARD ERRORS AND 
CONFIDENCE BOUNDS 

The SUDAAN logistic procedure yields values for 
coefficients: AO, A l ,  A2, etc appearing in (2). 
The same procedure provides also the 
covariance matrix: COV(Ai, Aj). This helps in the 
calculation of the variance of the argument w of 
the probability appearing in (1). Specifically, the 
variance of w is given by: 

var(w) = Sum[Cov(Ai, Aj)'xi'xj] (3) 
over all i and j 

Note that i or j assume the values: 0, 1. 2, etc, 
corresponding to the intercept and the predictors 
appearing in relation (2). When an analyst 
assigns desirable values to xi and xj, an 
application of (3) yields the variance: var(w). 

Moreover, to a first approximation, the variance of 
the probability (1) is given by: 

and the standard error of P is: 

seP = square root [var(P)] (5) 

Also to a first approximation, the 95% confidence 
bounds of P are given by: P +I- (1.96 ' seP) 

ADDRESSED PREDICTORS 

In this paper the basic data, i.e. data concerning 
car occupants involved in towaway crashes, are 
used for the derivation of algorithms that 
estimate: (a) the probability of a crash involved 
occupant being a fatality; (b) the probability of a 
crash involved occupant with at least one injury of 
maximum severity MAlS 3+; and (c) the 
probability of a crash involved occupant with at 
least one injury of MAlS 2+. Extension to other 
outcome populations is readily evident. Short 
notation for the pred~cton addressed in 
developing algorithms is given below: 



ONEVEH Single Car Crash 
BIGTRK Collisicn with Large Vehicle 
ROLL Planar Crash with Rollover Occurrence 
DELTAV Total Delta V, mph 
GADSP Side Damage, Passenger Compart. 
GADSNP Side Damage, Excluding Passenger 

Compartment 
GADB Rear Damage 
DOFS Direction of Force: 8-10 8 2-4 O'Clock 
DOFB Directiorl of Force: 5-7 O'clock 
MAXC Maximum Crush, inches 
INTRU Intrusion, 6 inches or more, in Front 
CURBWT Car Curb Weight, in 100 lbs 
FRPAX Right Front Seat Pasenger 
RRPAX Rear Seat Pasenger 
BELT Safety Belt Use 
BEBA Air Bag Deployment 8 Belt Use 
AGE Car Occupant's Age 
FEMALE Occuppant's Gender 
OCCWT Occuppant's Weight. Ibs 
OCCHT Occuppant's Height, inches 
ENTRP Entrapment 
EJC Complete Ejection 
EJP Partial Ejection 

These predictors are alternatives and operate in 
conjunction with a baseline that addresses 
unrestrained male car drivers, in primarily planar 
and frontal crashes with other cars. Thus, given 
the cited baseline, the only two alternatives 
addressed above for a collision partner are: 
ONEVEH and BIGTRK. Similarly GADSP, 
GADNSP, and GADB are the alternatives to 
frontal damage included in the baseline. Top 
damage is not addressed because of a relatively 
low incidence. 

In fact it is important to note that rollover in 
general is not included in the development of the 
algorithms at issue. This is necessitated by the 
desire to include Delta V as a most influential 
parameter. This parameter is not defined in 
general rollover. Thus, predictor ROLL 
appearing in the above list covers the crashes 
which are initially planar, with a possible 
subsequent rollover. 

Other implicitly understood alternatives not 
named in the above list are: direction of force 11 
to 1 O'Clock, driver's seat, no restraint use, male 
occupant, and no ejection. These are baseline 
attributes. Most other attributes are either binary 
(yes or no), or continuous. 

PROGRAMMABLE ALGORITHMS 

Optimal algorithms are presented below in order 
of increasing complexity. Relation (1) is always 
the basic platform. The simplest way of 
formulating the exponent "w" is in terms of 
DELTA V, the most influentlal parameter, as 
shown below: 

w = A0 + AI'DELTAV (6) 

where DELTAV=Total Delta V in mph 
continuously. 

The logistic regression (1) and (6) applied on the 
basic data, seeking the probability for fatality or 
MAlS 3+ or MAls 2+. yields the coefficients A0 
and A1 and the associated standard errors, with 
numerical values shown in the first cluster of 
Table I. Next we address the more complex, but 
still relatively simple, fit shown in (7) below: 

w = A0 + AI'DELTAV * A2'DOFS + A3'DOFB (7) 

where in addltlon to DELTAV we Include 
DOFS = 1 11 the dlrectlon of force is 8-10 or 2-4 O'Clock. 

else DOFS.0, 
DOFB = 1 11 the dlrectlon of force IS 5-7 O'Clock. 

else DOFB=O, and lf DOI'S=DOFB=O then the d~rectron of 
force e 11 to 1 O'Clock 

Numerical values for the coefficients AO, A l .  A2, and A3 
appear In the second cluster of Table I 

n a s mllar fasnlon we aLgrne,! the reso LI on 01 lne algot thms 
3y lnclud ng aaalllonal prea ctors as shown m tne fol~ovnng 
three progressively complex cases: 

w = A0 + Al'DELTAV + ATDOFS + A3'DOFB 
+ A4'AGE + AS'BELT + AS'BEBA (8) 

IN = A0 + Al'DELTAV + ATDOFS + A3.DOFB 
+ A4'ROLL + ASFRPAX + AG'RRPAX 
+ A7'AGE + AB'BELT + A9'BEBA (9) 

!N = A0 + AI'ONEVEH + AZ'DIGTRK + A3'ROLL 
+ ACDELTAV + ASGADSP + AG'GADSNP 
+ A7'GADB + Ae'MAXC + AS'INTRU 

+ AIO'CURBWT + A1 I'FRPAX + AlTRRPAX 
+A13'BELT + AlQBEBA + AISIAGE 
+ AlS'FEMALE + A17'0CCWT + Al8'OCCHT 
+ A19'ENTRP + AZO'EJC + A21'EJP (10) 

where in addition to predictors defined earlier, 
AGE = occupant's age in years continuously; 
I3ELT = 1 if a safety bell is in use; else BELT=O; 
BEBA = 1 if an air bag deploys in addition to 

a safety belt in use; else BEBA=O; 



ROLL = 1 if car rollover occurs: else ROLL=O: 
FRPAX = 1 if the occupant is in front seat right; 

else FRPAX=O; 
RRPAX = 1 if the occupant is in rear seat; 

else RRPAX=O; 
if FRPAX=RRPAX=O then we deal with 

the driver: 
ONEVEH = 1 if this is a single car crash: 

else ONEVEH=O; 
BIGTRK = 1 if the collision partner is a big truck; 

else BIGTRK=O; 
if ONEVEH=BIGTRK=O then 

the collision partner is a car; 
GADSP = 1 if th~e damage area is on the car's 

side and includes the passenger's 
compartment; else GADSP=O; 

GADSNP = 1 if the damage area is on the car's 
side but excludes the passenger's 
compartment: else GADSNP=O; 

GADB = 1 if the damage area is rear; else 
GADB=O; 

MAXC = maximum crush, in inches continuously; 
INTRU = 1 if 6 inches or more intrusion occurs 

in the front compartment; 
else INTRU=O: 

FEMALE = 1 if the occupant is female; else 
FEMALE=O: ~~ ~ 

OCCWT = occupants weight in lbs continuously; 
OCCHT = occupants height in inches 
ENTRP = 1 if eritrapment occurs; else 

ENTRP=O: 
EJC= 1 if a complete ejection occurs; else 

EJC=O; 
EJP=I if a partial ejection occurs; else EJP=O; 

if EJC=EJP=O then No Ejection Occurs. 

Numerical values for the coefficients appearing in 
relations (S), (9), and (10) may be found in the 
third, fourth, and last cluster of Table I, 
respectively. 

Note in the results shown in Table I that most 
predictors are binary, except for such predictors 
as Delta V, Age, etc which are continuous 
variables. The  magnitude of coefficients for such 
continuous predictors must be interpreted in 
conjuction with the units of their measurement. 
Thus the coeffic:ient value of 0.177 for Delta V in 
Table I (A) goes along with a Delta V in mph. It 
represents the increase per mph of the 
corresponding term in the algorithm. Similarly 
coeffic~ents associated with: age, maxc, curbwt. 
occwt, and occht elsewhere in the cited Table 

must be interpreted on a basis of: per each year 
of age, per each inch of crush, per each 100 lbs 
of car curb weight, per each lb of an ocupant's 
weight, and per each inch of an occupant's 
height, respectively. 

GOODNESS OF FIT AND PREDICTED V. 
OBSERVED OUTCOMES 

A car's crash severity, Delta V, is such a strong 
determinant of occupant casualty outcome that it 
covers most of the variability observed in the field 
experience with relatively small errors. See for 
example Table I (A). Nevertheless, both the 
predictive resolution of an algorithm, and the 
goodness of the fit to the field data improve as 
further predictors are included, even if they are 
less influential than Delta V. 

However beyond ;a certain point, diminishing 
returns become evident as may be seen in the 
progression of algorithm complexity, from (A) to 
(E) in Table I. As more predictors are included in 
the analysis, some prove to be quite marginal, 
given that the error of their coefficient assumes 
values comparable to the coefficient proper. 
Thus caution is recommended in order to avoid 
misleading results and conclusions. 
Except for predictors with coefficient errors 
approaching the coefficient values, all predictors 
and all algorithms shown in Table I have been 
found statistically highly significant, on the basis 
of various statistical scores. Said algorithms 
account for most of the variabilrty observed in the 
field experience. IDiscernible improvements are 
evident as one progresses from (A) to (C) in 
Table I, but beyond that point, further 
improvements are marginal and they may be 
misleading. 

Quantitatively speaking, the bottom line for taking 
or not taking into account the influence of a 
predictor is the magnitute of the error relative to 
the coefficient of the predictor at stake. 

In addressing the association of predicted 
probabilities of a certain outcome with actually 
observed outcomes we determined that the 
percentage of correct predlchons varles from 
about 75% to 96%. depend~ng on algor~thm 
complexity and severity of predicted outcome. In 
addition, we used a score known as Somer's D 
that measures association on a 0 to 1 scale (no 



association to perfect association). For the 
algorithms that project probability of fatality (A to 
E in Table I) the cited indicator was found to have 
values: 0.686, 0.727, 0.801, 0.803. and 
0.850, respectively. The corresponding values 
for MAlS 3+ outcome are: 0.587. 0.626. 0.686, 
0.691, and 0.748. respectively. 

NUMERICAL APPLICATIONS & 
ILLUSTRATIONS 

The probability of fatality among towaway crash 
involved car occupants, without any further 
qualification, is about 0.6%. For injured 
occupants at MAlS 3+, or at MAlS 2+ the 
probability is: 6.8% and 14.7%. respectively. 
These may be considered as alternative 
statements for casualty rates per 100 occupants. 

Each of these rate.5 may be resolved by crash 
severity. Delta V, with the help of algorithm (6). 
The results of this resolution are shown in Fig. 1 
Further resolution, i.e. by direction of force in 
addition to Delta V is provided when algorithm 
(7) is applied. Figure 2 illustrates results relevant 
to MAlS 3+. A sim~lar algorithm may provide 
resolution by Delta V and restraint use and type. 
Results concerning MAlS 3+ are illustrated in Fig. 
3. Resolution by Delta V and occupant's age is 
illustrated in Fig. 4. 

The results obtained via relatively simple 
algorithms, as illustrated in Figs 1 to 4, could 
equally well and perhaps more appropriately be 
obtained from more complex algorithms that 
encompass the predictors at stake in the cited 
figures, plus additional predictors that could be 
influential. 

More complex algoriihms can be applied for 
obtaining results concerning one or a few 
predictors of immediate interest, with stipulated 
values. In practice this method is applied to a 
multi-predictor algorithm by assigning to 
predictors, other thian those of immediate 
interest, their mean values on the basis of the 
field experience. The advantage of using this 
more cumbersome method is that the additional 
predictors are frozen at values common to the 
entire population under consideration, something 
that helps minimize possible confounding effects. 
It is also understood that no additional predictors 
should be entertained unless they have 

statistically significant coefficients, i.e. small 
errors. 

MULTI-PREDICTOR ALGORITHMS 

Very long and cumbersome algorithms may 
result if one insists on including many interesting 
and available predictors, even if all are 
statistically significant. Applications and results 
may become intractable. For this reason we 
developed a good approximation to the projection 
of a casualty probability on the basis of a known 
coefficient, without having to make a full 
application of a cumbersome algorithm. As a 
first approximation, the following relation holds: 

DeltaP = P'(1-PYA (1 1) 

where DeltaP is the casualty probability 
increment resulting from the inclusion of a 
predictor with coefficient A, in any case where a 
probability P has been projected in the absence 
of said predictor. Note that in relation (1 1) the 
probability P and the increment DeltaP are on a 0 
to 1 basis, as opposed to 0 to 100%. Also note 
that the increment becomes a reduction when 
coefficient A is negative. 

It is evident that the increment or reduction vanes 
from zero, at P=O, to a maximum at P10.5, and 
back to zero at P=l .  For convenience. relation 
(1 1) is graphically illustrated in Fig. 5, for four 
different values of regression coefficients: 0.25, 
0 50. 1 .O, and 2.0. Other values are readily 
obtained by interpolalion. 

The primary application of (1 1) is to assist in the 
quantification of effects described by the 
coefficients of multipredictor algorithms, such as 
those appearing in Table I (D) and (E). It is 
evident that (1 1) should be applied stepwise. 
especially when an one step application leads to 
the absurd result of (P+DeltaP) > 1. For the 
same reason (11) is applicable to individual 
evaluations, as opposed to an evaluation of 
several influences combined. 

REVIEW OF THE RESULTS 

It is informative to review the numerical results 
obtained by the algorithms in this paper, in 
comparison with results known from earlier and 
independent studies concerning factors that 



influence the rates, or probabilities, of casualty. 
Note, for example in Fig. 1, that the probability of 
MAlS 3+ is about 50%, consistent with a widely 
held benchmark. 

Resolution by direction of force, see Fig. 2, shows 
the 8-10 and 2-4 O'clock impacts to dominate 
the threat of serious casualty, with the 11-1 
O'clock impacts second, and the 5-7 O'Clock 
impacts in the familiar distant third rank. 

As recognized in several restraint effectiveness 
studies, the effectiveness of restraints is about 
50% from about 10 or 15 mph DeltaV to about 
30 mph. Thereafter, the effectiveness starts 
declining and becomes negligibly small at high 
crash severities This is readily evident in the 
algorithm results shown in Fig. 3. 

The small superiority seen for "belt & air bag" v. 
"belt only" in Fig.3 is actually substantially larger 
when the results are controlled for possible 
confounders beyond crash severity only. This is 
evident in the relevant coefficients appearing in 
multi-predictor algorithms such as those shown in 
Table I (C) to(E:~. 

Furthermore, by comparing the relevant restraint 
coefficients as a function of casualty severity. it 
appears that the superiority of "belt 8 air bag" v~ 
"belt only" is dominant at high casualty severities, 
e.g. fatalities or MAlS 3+, but declines at lower 
severities, e.g. MAlS 2+. This situation, although 
still confused by the accompanying statistical 
uncertainties, is consistent with the notion that the 
air bag is very effective in preventing high severity 
injuries although it may cause lower severity 
injuries. 

The multipredictor algorithm (lo), with 
coefficients shown in Table I (E), reveals 
quantitatively several factors of strong influence, 
fully consistent with qualitative notions held 
intuitively. Beyond Delta V, age, and restraint use 
or type discussed earlier, strong influences are 
seen here associated with rollover, ejection 
(whether complete or partial), with entrapment, 
intrusion, and maximum crush. Recall that 
positive coefficients are associated with an 
increase of casualty probability that may be 
approximately, and one at a time, estimated via 
(11). 

Such an estimation is illustrated in Fig. 6 for the 
strong influences cited above. Most other 
influences, as implied by their coefficients in 
Table I(E), are either weak when considered in 
conjunction with strong influences, or are not 
significant in view of the accompanyig standard 
error. 

CONCLUSIONS 

Research reported in this paper, although still 
not fully mature, provides useful applications in 
succinct and insightful descriptions of the car 
crash environment. In adition, several further 
applications may be anticipated. For example. 
practitioners of post-crash emergency care for 
traffic accident casualties, from emergency 
vehicle dispatch centers to trauma centers and 
hospitals, could benefit from way; of projecting 
casualty severity on the basis of a crash 
signature. 

Such adjunct information could supplement 
anatomical and physiological information, 
currently used, in order to enhance the timeliness 
and appropriateness of emergency care 
decisions This is especially applicable if the 
additional information becomes available at crash 
time, well before the emergency care complex is 
fully activated. Essentially, the advent of high 
tech, low cost sensors and electronics that may 
soon be carried on cars and other vehicles, could 
allow the transmission, at crash time, of crucial 
information concerning crash circumstances. 
crashed vehicle(s), and crash involved 
occupants. 

Irrespective of electronic acquisition of crash 
signatures at crash time, as discussed above. 
very similar information could be retrieved and 
transmitted by emergency attendants afler they 
reach the crash scene. It becomes then a matter 
of translating this information into data useful to 
dispatch and emergency teams, either ready to 
attend the accident scene. or preparing for 
appropriate treatment(s) in emergency facilities. 
This paper has addressed and evaluated the 
state-of-the-art in translating advance notification 
data, either from vehicle mounted sensors at 
crash time, or from emergency attendants at the 
scene. 
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Table I. Logistic Regression Coeficients and Standard Errors 

Fatality MAIS 3+  MAIS 2 +  
(A) 

~ e i  ' ( 6 )  Ai Ai Ai 
Predictor Coeffcnt Std Error Coeffcnt Std Error Coeffcnt Std Error 

Intercept - 8 . 2 5 2  0 . 3 2 6  - 5 . 4 5 0  0 . 1 5 7  - 3 . 7 6 1  0 . 1 4 8  
DELTAV 0 . 1 7 7  0 . 0 1 1  0 . 1 7 8  0 . 0 1 0  0 . 1 3 6  0 . 0 1 1  

Fatality MAIS 3 +  MAIS 2+ 
(B) .............................................................. ................................. 

~ e i  ' ( 7 )  Ai Ai Ai 
Predictor Coeffcnt Std Error Coef5cnt Std Error Coeffcnt Std Error 
........................................................................ ........................................................................ 
Intercept - 9 . 0 3 2  0 . 2 5 9  - 5 . 8 2 0  0 . 1 3 9  - 4 . 0 2 9  0 .115  
DELTAV 0 . 1 9 8  0 . 0 1 0  0 . 2 0 2  0 . 0 0 6  0 . 1 5 5  0 . 0 0 6  
DOFS 1 . 4 6 2  0 . 1 8 9  0 . 5 5 6  0 . 0 9 9  0 . 4 6 5  0 . 0 8 3  
DOFB - 1 . 9 2 1  0 . 3 4 3  - 2 . 1 7 0  0 . 3 0 7  - 1 . 1 7 7  0 . 2 4 5  

Fatality MAIS 3+  MAIS 2 +  
ir-\ -- --====================================.======================= 
\ - ,  

Re1 ( 8 )  Ai Ai Ai 
Predictor Coeffcnt Std Error Coeffcnt Std Error Coeffcnt Std Error 
........................................................................ 
Intercept - 1 0 . 8 3 0  0 . 2 9 3  - 6 . 5 3 8  0 . 2 1 3  - 4 . 3 9 3  0 . 1 4 3  
DELTAV 0 . 2 1 1  0 . 0 0 9  0 . 2 0 8  0 . 0 0 7  0 . 1 5 7  0 . 0 0 6  
DOFS 1 . 3 0 1  0 . 1 9 6  0 . 4 5 7  0 . 1 0 1  0 . 4 0 3  0 . 0 8 7  
DOFB - 1 . 7 1 6  0 . 3 0 3  - 2 . 0 2 5  0 . 2 4 0  - 1 . 0 6 0  0 . 1 9 4  
AGE 0 . 0 5 1  0 . 0 0 4  0 .  ,333 0 . 0 0 2  0 . 0 2 6  0 . 0 0 2  
BELT - 0 . 8 5 9  0 . 2 3 4  - 0 .  ,326 0 . 0 9 8  0 . 8 3 9  0 . 0 8 2  
BEBA - 1 . 4 7 8  0 . 6 8 4  - 1 . 5 6 4  0 . 3 2 5  - 1 . 0 0 1  0 . 3 3 0  

Fatality MAIS 3 +  MAIS 2+ 
i n )  ............................................................. 

~ e i - ' ( 9 )  Ai Ai Ai 
Predictor Coeffcnt Std Error Coeffcnt Std Errsr Coeffcnt Std Error 
........................................................................ 
~ntercept - 1 1 . 1 4 4  0 . 3 6 6  - 6 . 7 1 0  0 . 2 1 1  - 4 . 4 4 9  0 . 1 5 2  
DELTAV 0 . 2 1 1  0 . 0 0 9  0 . 2 0 8  0 . 0 0 6  0 . 1 5 7  0 . 0 0 6  
DOFS 1 . 2 9 8  0 . 2 0 3  0 . 4 3 2  0 . 1 0 2  0 . 3 9 7  0 . 0 8 7  
DOFB - 1 . 7 8 1  0 . 3 1 7  - 2 . 0 4 9  0 . 2 4 2  - 1 . 0 6 8  0 . 1 9 5  
ROLL 1 . 2 8 0  0 . 3 2 2  1 . 7 5 8  0 . 2 3 7  1 . 3 3 9  0 . 2 7 1  
FRPAX 0 . 8 9 0  0 . 3 2 3  0 . 2 5 1  0 . 1 1 3  0 . 1 5 6  0 . 1 0 0  
RRPAX - 0 . 1 8 6  0 . 3 5 0  0 . 2 6 3  0 . 2 3 1  0 . 0 1 6  0 . 1 4 9  
AGE 0 . 0 5 3  0 . 0 0 5  0 . 0 3 5  0 . 0 0 2  0 . 0 2 6  0 . 0 0 2  
BELT - 0 . 8 8 7  0 . 2 2 4  - 0 . 8 1 1  0 . 0 9 5  - 0 . 8 4 0  0 . 0 8 1  
BEBA - 1 . 3 5 3  0 . 6 6 7  - 1 . 5 1 8  0 . 3 2 7  - 0 . 9 9 0  0 . 3 3 4  



Table I Cont'd. Logistic Regression Coeficiente and Standard Errors 

Fatality MAIS 3+ MAIS 2+ 
(E) 

Re1 (10) Ai Ai Ai 
Predictor Coeffcnt Std Error Coeffcnt Std Error Coeffcnt Std Error 
........................................................................ ........................................................................ 
Intercept -11.901 3.094 -6.118 0.703 -4.584 
ONEVEH 

0.600 
0.259 0.230 0.322 0.152 0.155 0.134 

B IGTRK 0.312 0.280 0.002 0.124 0.084 0.132 
ROLL 0.764 0.357 1.157 0.284 1.086 0.316 
DELTAV 0.135 0.014 0.164 0.010 0.126 0.010 
GADSP 1.. 113 0.224 0.219 0.131 0.260 0.122 
GADSNP -0.076 0.496 0.057 0.241 0.256 0.183 
GADB - 2 : .  046 0.553 -1.793 0.254 -1.237 0.206 
MAXC C l .  056 0.011 0.037 0.007 0.039 0.007 
INTRU 1.076 0.335 0.807 0.128 0.648 C.. 119 
CURBWT -0.012 0.031 -0.027 0.009 -0.031 0.008 
FRPAX 1.034 0.341 0.232 0.138 0.017 0.118 
RRPAX 0.348 0.347 0.103 0.203 -0.209 0.164 
BELT -0.512 0.275 -0.650 0.111 -0.691 0.093 
BEBA -1.341 0.405 -1.356 0.373 -0.698 0.400 
AGE 0.060 0.005 0.042 0.003 0.030 0.003 
FEMALE 0.334 0.268 0.464 0.115 0.396 0.102 
OCCWT 0.002 0.004 0.003 0.002 0.001 0.002 
OCCHT -0.004 0.038 -0.014 0.011 -0.000 0.009 
ENTRP 0.932 0.294 2.378 0.480 2.358 0.511 
E JC 2.896 0.506 1.859 0.838 1.270 0.886 
E JP 1.915 0.368 1.468 0.368 1.166 0.414 



Fig. 1. Probability of Shown Outcome. 
as a Function of Car Crash Severity 
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Fig. 2. Sensitivity of Max AIS 3+ 
to the Direction of Force, 

as a Function of Car Crash Severity 
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Fig. 3. Sensitivity of Max AlS 3+ 
to an Occupant's Restraint Use and Type, 

as a Function of Car Crash Severity 
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Fig. 4. Sensitivity of Max AIS 3. 
to an Occupant's Age, 

as a Function of Car Crash Severity 
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Fig. 5. Sensitivity of Casualty 
Probability to Shown Values of a 
Logistic Regression Coefficient 
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Fig. 6. Increase of MAlS 3* Probabiiity 
over Shown Base. Due to Shown influences 
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