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ABSTRACT

Current Automatic Collision Notification Systems
(ACN) utilize deltaV as a simple predictor of injury
likelihood. When considered independently, this
single variable provides a general indication of injury
potential, yet it lacks specificity to adequately
distinguish between injured and uninjured occupants
in many cases. However, when additional crash
attributes are considered in conjunction with deltav,
the accuracy of injury predictions greatly improves.
The following paper presents two crash models of
varied complexity and compares their predictive
ability with predictions based on deltaV alone.

Within this paper, regression models are presented
which relate occupant, vehicle and impact
characteristics to two different injury outcome
variables. These are Maximum Abbreviated Injury
Scale Level (MAIS) and occupant Injury Severity
Score (ISS). The accuracy of proposed models are
evaluated using National Automotive Sampling
System/ Crashworthiness Data System (NASS/CDS)
and Crash Injury Research and Engineering Network
(CIREN) case data.

Cumulatively, the positive prediction rate of models
identifying the likelihood of MAIS3 and higher
injuries is 74.2%. Regression models which predict
ISS on a continuous scale correctly identify injured
occupants with a sensitivity of 86.1%. The predictive

accuracy of each model presented is compared with
deltaV alone to support the need for additional model
variables for use in future ACN systems.

INTRODUCTION

The National Highway Traffic Safety Administration
(NHTSA) has reported that 27 million vehicles were
involved in over 17 million crash events on US
roadways in 2000. During these events, an estimated
2 million occupants sustained injuries requiring
medical care, but only 1 in 8 sustained injuries that
were considered life threatening [1]. Although these
250,000 seriously injured occupants require the most
urgent medical attention, they are not easily
distinguished from the less severely injured using
current rescue protocols. This inability to distinguish
occupants at high risk for severe injury results in
costly delays in treatment and poor allocation of
medical resources.

A number of crash attributes have been recognized as
important indicators of injury potential, yet the use of
this information to improve rescue care has been
limited to date. In the event of a motor vehicle crash,
potentially injured occupants rely on passing
motorists or accessible cellular technology to initiate
a call for help. Once this call has been made, rescue
services verbally gather location and crash severity
data from callers in order to select and deploy rescue
services to the crash site. A study by Evanco et. al.
estimates a potential reduction of 3,069 rural fatalities
if notification times within one minute of the crash
are achieved [2]. Clark and Cushing estimate this
potential fatality reduction to be 1,697 for the 1997
fatally injured population [3].

Upon arrival to the crash, first care providers rely on
anatomical, physiological and mechanism criteria to
distinguish occupants who require trauma center care
from those who do not. In many cases, evidence of
severe internal injury is difficult to discern in the
field. A large number of crash involved occupants
are improperly transported to non-trauma center care
before the true severity of their injuries is recognized.

Conversely, many occupants are triaged to trauma
centers based on “High Suspicion of Injury” criteria
in the absence of definitive evidence of injury. In
this case, first care providers may choose trauma
center care based on their overall impression of an
occupant’s condition even if they do not meet any
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established trauma criteria. This use of paramedic
judgment greatly improves the chance that an
occupant who has sustained non-obvious or occult
injuries will receive necessary trauma center care. In
many cases, this practice taxes rescue and in-hospital
resources.

In Miami, Florida 60% of occupants triaged to the
Ryder Trauma Center under “High Suspicion of
Injury” criteria are discharged within 24 hours of
hospital arrival [4]. This suggests that better methods
to discern the seriously injured from uninjured in the
field may help to reduce the unnecessary use of
valuable medical resources.

In 1997, Malliaris et. al. propose the URGENCY
algorithm to predict the risk of serious injury in the
event of a motor vehicle crash [5]. The algorithm
processed crash conditions using logistic regression
models to predict the likelihood of AIS3 or higher
injury for crash involved occupants. A single
regression model was developed to predict injury risk
for all crash modes based on characteristics known to
be influential for injury outcome. This approach is
effective in the characterization of the interaction
between model variables; however, it assumes that
variations in crash attributes are equally influential in
all crash directions. The creation of distinct crash
models by impact direction is necessary to enhance
the predictive ability of predictive injury models.

The following paper supports further implementation
and enhancement of Automatic Collision Notification
technology to improve crash rescue care. Further
development of the URGENCY algorithm is
described and its predictive ability is documented
through an analysis of real world crash cases. Four
independent injury models by crash mode were
developed. Each algorithm was created in two levels
of complexity and tested for its accuracy. Model
performance is also compared with the use of deltaV
alone as an independent predictor of injury.

DATA SOURCES AND METHODS

For this study, National Automotive Sampling
System / Crashworthiness Data System (NASS/CDS)
crash data was used to develop models that predict
the likelihood of severe injury. Early versions of the
URGENCY algorithm are based on occupant level
data from NASS/CDS 1988-1995 while more recent
improvements are based on NASS/CDS 1995-1999
cases. Model testing and validation was performed
using NASS/CDS 2000 and 2001 data as well as
Crash Injury Research and Engineering Network
(CIREN) case files.

Both NASS/CDS and CIREN databases provide
cases where crash attributes and their corresponding
injury outcomes are known for each crash involved
occupant. NASS/CDS cases provide information
regarding crashes across all injury severities at a
national level while CIREN cases provide more
detailed investigations of occupant injury mechanism
for only the most severely injured crash population.

NASS/CDS 1995-1999 cases were processed such
that accident, vehicle and occupant level data are
linked for any crash involved occupant twelve years
and older. The analysis was performed for all
occupants in any seating position. For the purpose of
model development during this stage, only maximum
injury severity (MAIS) and overall occupant injury
severity (ISS) were necessary for processing;
therefore, injury level data was not linked.

Model variables were conditioned and categorized
into continuous or dichotomous variables classes.
Crash attributes, where multiple categories exist,
were recoded as single binary variables. Table 1
below shows a subset of model variables used in each
proposed model.

Table 1. Crash attributes Considered for
Regression Models

Variable Description
DELTAV Tot. DeltaV- High Severity Event
BELT 3-Point Belt Usage
BDPLY Airbag Deployment
MAXC1 Maximum Exterior Crush 1 (in.)
MAXC2 Maximum Exterior Crush 2 (in.)
NARROW Narrow Object Collision
INTRUS Intrusion Near Occupant (in.)
EJP Partial Occupant Ejection
EJC Complete Occupant Ejection
SQR_AGE Occupant Age Squared
STRIM Steering Rim Deformation
OCCHT Occupant Height (in.)
OCCWT Occupant Weight (lb.)
BMI Body Mass Index
FEMALE Occupant Gender
TRACK Seat Track Position
MULTI Multiple Significant Impacts
SEATPOS Seating Position

CIREN investigations consider only crash involved
occupants who are transported to one of nine Level I
trauma centers participating in the study or those who
are fatally injured during a crash. Case investigations
focus on fewer cases per year with significant
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emphasis on analysis of crash causation and injury
mechanism. Accordingly, CIREN case investigations
provide very detailed information regarding only the
most serious crash events. CIREN cases were used
primarily for recognition of injury patterns and final
model validation during this study.

CIREN crash variables were coded identically to the
NASS/CDS variables shown in Table 1. This allows
for direct application of NASS/CDS based
parameters to CIREN populations during validation.
Figure 1 shows a comparison of MAIS level per
crash involved occupant for NASS/CDS 2000-2001
as well as CIREN census data. It may be easily
recognized that the average severity of injured
occupants within the CIREN census far exceeds that
of the NASS/CDS dataset. The effect of this varied
distribution on model behavior will be discussed later
in this text.

NASS/CDS and CIREN Injury Distributions
(non-injured excluded)
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Figure 1. NASS/CDS and CIREN Injury
Distribution

Regression Modelling

Simple linear regression and logistic regression
techniques were used during this study to represent
observable relationships between a population of
independent parameters and dependant outcomes.
Each approach uses the Method of Least Squares to
generate a function describing the behavior of some
outcome variable in terms of a series of input
parameters. The primary difference between linear
regression and logistic regression techniques lies in
the form of the dependent outcome variable (i.e.
injury measure).

Simple linear regression fits data points in order to
predict outcomes which are unbounded or could have
any value (positive or negative). This technique was
used to linearly relate crash parameters to an ISS
value on a continuous scale. Equation 1 presents a
model containing two parameters (deltaV and age) as

they relate to a predicted ISS value for a given crash
configuration. During model fitting, values for the
intercept, β1 and β2 are generated forming a linear
function to best approximate ISS score based on
observed crash characteristics.

Eq. 1: agedeltaVInterceptISS **)( 21 ββ ++=

Alternatively, logistic regression models fit
relationships to predict the probability that a selected
event will occurred (yes or no response). This
approach, using the Principle of Maximum
Likelihood, yields a probability value on a scale
which is bounded by 0 and 1 (i.e. probability of event
occurrence between 0 and 100 percent). For this
study, the hypothesis that a crash event will result in
an MAIS3 or higher injury based on input parameters
is tested. Equation 2 below defines the relationship
between input parameters and the intermediate
parameter w. When substituted into Equation 3, this
parameter yields the maximum likelihood that an
MAIS3+ injury will occur.

Eq. 2: agedeltaVInterceptw **)( 21 ββ ++=

Eq. 3:
))exp(1(
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The relationships shown above (Equations 1, 2 and 3)
can be expanded to include additional crash
descriptors that are known to be influential to injury
risk. If a variable is significant to the modelled
outcome, the addition of that parameter to the
regression equation should enhance the predictive
ability of the model. In some cases, however,
additional model parameters do not lead to significant
increases in model accuracy. Therefore, model
parameters should be judiciously selected. During
this study, variable selection was performed through
an iterative analysis of model accuracy while
parameters were added or removed from each.
Details of this process have been previously reported
[6].

INJURY PREDICTION BASED ON CRASH
CHARACTERISTICS

In order to quantify the level of injury sustained by
occupants involved in motor vehicle crashes, a
consistent and meaningful measure of injury severity
must first be selected. The scoring system must
provide a clear indication of the most severe injury
level sustained so that injured occupants may receive
the most appropriate medical care in the post crash
phase. At the same time, this scale must accurately
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reflect the total amount of crash energy to which an
occupant was exposed during a crash event.

As shown in Figure 2, the risk of MAIS3+ injury
(vertical markings) increases in a nonlinear fashion
with respect to deltaV. When accurately calculated,
deltaV provides a good indication of the kinetic
energy of the vehicle/occupant system before impact.
Dissipation of this energy and the degree to which an
occupant is subjected to it directly relates to the level
of trauma an occupant is likely to sustain.

Mean MAIS vs. Mean ISS vs. %MAIS3+
by DeltaV Range
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Figure 2. Injury Severity Distribution by DeltaV-
Mean MAIS Value and ISS

MAIS

The Abbreviated Injury Scale (AIS) is a well
established measure of trauma per injury sustained
during a crash. It measures the physical disruption of
tissue due to the ill effects of impact energy. An AIS
score is assigned to each discernable injury across all
body regions and provides an indication of the threat
to life due to a specific injury. The highest AIS or
Maximum AIS value (MAIS) has been used by many
to represent the overall severity of injury sustained by
an occupant. This measure indicates the extent of
occupant injury and the corresponding level of
required medical care; however, it does not
adequately account for all injuries sustained across
the entire body. If multiple occurrences of harmful
occupant loading take place, reporting a single MAIS
value does not adequately gauge the total trauma
experienced by an occupant.

ISS

The Injury Severity Score (ISS), was proposed by
Baker in 1974 to account for the effect of multiple
injuries on mortality risk [7]. The group studied a
population of motor vehicle crash victims and found
that mortality increased disproportionately with AIS
rating of the most severe grades. They proposed that

the risk of mortality could be better correlated using a
quadratic equation. The Injury Severity Score is
calculated by summing the squared AIS values for
three of the most severely injured body regions is
shown in Equation 4 below.

Eq. 4:
2
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Unlike the MAIS level, ISS provides an indication of
the total loading or trauma sustained by the human
body by including the three highest body regions and
their severity in its calculation.

Figure 2 shows the mean value for MAIS and ISS for
all crash modes as a function of deltaV.
Superimposed on this plot is the percent of MAIS3+
injuries which are sustained within each deltaV
range. The average MAIS score, indicated by the
solid bars, increase linearly with respect to the deltaV
range while the rate that MAIS3+ injuries occur
increases in a non-linear fashion. ISS better follows
the rate of serious injury (MAIS3+ injury risk) with
respect to deltaV.

Similar behavior of the average ISS and the severe
injury risk suggests that ISS may be a better measure
of injury severity for models based on deltaV and
crash energy. The ISS score also provides a
graduated scale which accounts for injury severities
that may extend beyond the single most severe injury
(as suggested by MAIS). This hypothesis is
evaluated below.

Within the following sections, logistic regression
models indicating the likelihood of MAIS3+ injury
and simple linear regression models predicting ISS
score are presented for two levels of model
complexity so that the relative accuracy of each
approach may be understood.

DeltaV Threshold

Currently, ACN systems utilize a single deltaV value
to initiate a rescue call in the event of a crash. In
general, the threshold for ACN calls corresponds with
the approximate deltaV value where airbag systems
deploy. Based on an investigation of the univariate
relationship between separate crash attributes and
injury, deltaV provided the most meaningful estimate
of occupant exposure to potentially harmful crash
energy compared to other variables [6]. For this
reason, its use as an indicator of injury risk in the
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absence of other crash information is useful. Used
independently, a single cutoff deltaV can be selected
where all occupants involved in crashes exceeding
the chosen value would be considered potentially
injured by ACN systems. Conversely, a call for help
may not be initiated below this threshold value.

When NASS/CDS crash events are classified as
serious or non-serious based on a single deltaV value,
a series of correct and incorrect classification rates
result. As the deltaV threshold level is varied, the
ratio of correct to incorrect injury classifications also
changes.

The accuracy of each selected deltaV threshold was
judged based on the percentage of correct indications
of a high risk of injury within a given population.
This value is known as model sensitivity. The
accuracy of this model can be further characterized
by its ability to correctly predict when an injury has
not occurred. This characteristic is known as model
specificity. For a given population of data, Table 2
indicates the four possible classifications of an event
based on observed vs. predicted injury values.

Table 2. Classification Table for Evaluation of
Model Accuracy

Uninjured Injured
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Model sensitivity, as shown in Equation 5, is defined
as the number of correctly identified injured
occupants divided by the complete population of
those injured. A sensitivity of 75% would indicate
that three quarters of all those injured were correctly
identified. While one quarter of the injured
population were incorrectly flagged as uninjured. The
specificity of a model, as described by Equation 6,
indicates the percentage of a population which is
correctly diagnosed as uninjured when they are
indeed not injured. Ideally, high sensitivity and high
specificity are desirable for a particular cutoff value
for a predictive model.

Sensitivity and specificity values provide an
indication of the ability of a model to predict an

outcome based on a selected probability threshold. If
the probability considered to be an indication of
injury was lowered, more occupants would be
flagged as injured. In some cases, the injury
probability calculated using by logistic regression
models may exceed the injury threshold for
occupants who are not injured. This would be a false
positive indication and would reduce model
specificity. Conversely, if the probability threshold
were raised, it is possible that a model prediction for
an injured occupant may not reach or exceed the
injury threshold value. This injured occupant would
be improperly classified as uninjured and a false
negative indication would result. This improper
classification would reduce model sensitivity.

As probability threshold values are varied from 0% to
100%, the number of correct and incorrect
classifications can be established for each possible
cutpoint. One method to evaluate the overall
performance of a model is to plot the sensitivity
versus 1-specificity for each threshold. This form of
binary result presentation is called Receiver
Operating Characteristic curve or ROC curve. A
perfect model will approach 100% sensitivity with
100% specificity. The shape of this curve would be a
90 degree angle with the vertex at (0,1). Conversely,
an ineffective model would show little correlation
between model prediction and observed behavior so
that the resulting curve would approach a straight line
at 45 degrees from the origin.

Figure 3 shows sensitivity and 1-specificity values
for each crash mode at several deltaV values. At a 17
mph threshold, a 65.2% sensitivity rate would result
with a false prediction rate of 18% for frontal
collisions. The frontal curve is shown in bold and a
series of threshold values are noted in 5 mph
increments along the curve.

Injury Discrimination by DeltaV Only
All Modes- Varied Cutoff Points
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Alternatively, a logistic regression model may be
used to predict the risk of an MAIS3+ injury based
soley on deltaV as shown in Table 3. Here, the
intercept and regression coefficient values for the
single parameter model are given. The maximum
likelihood of MAIS3+ injury calculated using
Equations 3 and 4 indicate that the risk of serious
injury for a 30 mph crash is 43.6%. Parameter
estimates for a regression model predicting Injury
Severity Score (ISS) are also shown in Table 3. This
model has been fit to predict the square root of ISS.
As a result, the predicted ISS for a 30 mph deltaV
crash event is 7.96.

Table 3. Logistic Regression and Simple
Regression- 1 Parameter Model (all modes)

Model
Type

Parameter
(All Modes)

Estimate Standard
Error

P(MAIS3+) Intercept -4.1951 0.0587
DeltaV 0.1301 0.00258

ISS Value Intercept -0.0776 0.02108
DeltaV 0.0966 0.00112

These estimates of MAIS3+ injury risk and ISS level
do not take any additional crash characteristics into
account. When separated by crash mode, the
parameter estimates for MAIS3+ injury are as shown
in Table 4. Based on these model parameters, the risk
of MAIS3+ injury for each mode is 38.9%, 83.8%,
47.8% and 19.9% for frontal, nearside, farside and
rear impact crashes respectively for a 30 MPH
deltaV. The predicted ISS values are 7.87, 21.35,
9.25 and 3.24 for each mode respectively based on
model parameters shown in Table 5.

Table 4. Logistic Regression Models Predicting
Probability of MAIS3+ Injury- DeltaV by Mode

Mode Parameter Estimate Standard
Error

Frontal Intercept -0.12626 0.03717
Deltav 0.0977 0.00194

Nearside Intercept -0.19778 0.1151
Deltav 0.1606 0.0061

Farside Intercept -0.25331 0.10488
Deltav 0.10983 0.00543

Rear Intercept -0.2245 0.07375
Deltav 0.05255 0.00429

Table 5. Simple Linear Regression Models
Predicting ISS Score- DeltaV by Crash Mode

Mode Parameter Estimate Standard
Error

Frontal Intercept -0.06617 0.02604
Deltav 0.09339 0.00135

Nearside Intercept -0.16719 0.09354
Deltav 0.15466 0.00492

Farside Intercept -0.28818 0.08095
Deltav 0.10973 0.00424

Rear Intercept -0.02787 0.06527
Deltav 0.06802 0.00378

The significant variation in injury risk based on crash
direction suggests that separate models for each mode
may better predict the occurrence of injury compared
to a single model which concurrently represents all
crash modes. As such, separate models are presented
for frontal, nearside, farside and rear impact crashes
in the following sections. For each crash mode,
parameter estimates are presented in two variable
groupings. These groups are listed and described
below.

Injury Prediction Based on Multiple Parameters

The main goal of this study is to develop injury
predicting algorithms for implementation in vehicle
Automatic Collision Notification Systems. With this
goal in mind, the selection of model variables has
been made in two stages where the first group
includes variables which are currently available for
processing by onboard systems. Some variables
within the second group are not yet available from
vehicles although results of this study support this
change.

Group 1- Existing Variable Set

Data points included in model group 1 are shown in
Table 6 below.

Table 6. Group 1 Model Variables
Variable Description

DELTAV Tot. DeltaV- High Severity Event
BELT 3-Point Belt Usage
BDPLY Airbag Deployment
MODE Crash Direction/Impact Mode
SEATPOS Seating Position
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Table 7. Group 1 Parameter Estimates and
Standard Errors

Model
Type

Parameter
(Frontal)

Estimate Standard
Error

P(MAIS3+) Intercept -3.668 0.0986
Deltav 0.1238 0.00392
Belt -0.8036 0.0738
Bdply -0.06 0.1004

ISS Value Intercept 0.31879 0.04918
Deltav 0.09204 0.00196
Belt -0.49677 0.03941
Bdply -0.04 0.0396

Currently, vehicles use this information for a variety
of reasons including processing for occupant
protection systems. During this study, it was
assumed that this data is or could easily be made
available for processing by injury predicting
algorithms.

Model parameters for Group 1 logistic regression and
simple linear regression models are shown in Table 7
for frontal crashes only. Model variables for each
remaining crash mode are presented in Appendix
Table A2 of this text. These models predict the
likelihood of MAIS3+ injury and ISS respectively.

Group 2- Optimized Variable Set

The second level of model complexity considers
additional parameters that may not be available
through current sensor systems. These detailed
models are presented to promote the addition of
some, if not all, of these variables in order to
maximize the accuracy of predictive models.

In the future, selected model parameters could be
derived from basic occupant sensor technology.
Upcoming regulatory requirements intend to improve
the level of protection provided by advanced restraint
systems through a better understanding of occupant
factors (i.e. occupant height, weight, gender). These
characteristics may provide additional data points for
processing by on-board diagnostic systems. In the
meantime, verbal communication of some data points
listed below may significantly enhance the ability of
ACN call takers to assess likely injury severity from
remote locations.

Some of this information may also be generated
through processing of raw information like vehicle
acceleration profiles. Post crash processing of
vehicle acceleration data may provide valuable
information regarding the nature of a collision event
if collected for a larger portion of the crash event.

As an example, the acceleration profile for some
narrow object collisions can be distinguished from
profiles of other collision types due to its
characteristic shape. These events are characterized
by a prolonged period of moderate deceleration
followed by a sharp increase in deceleration level
once the narrow object begins interaction with more
rigid engine and drive train components. This
information could be used as a model input parameter
to indicate a narrow object impact.

Processing of vehicle rotational information can be
used to evaluate the potential for occupant
compartment intrusion in the region of a seated
occupant. During a side impact event, a sudden
rotation of the vehicle could indicate loading in the
front or rear third of the vehicle such that a yawing
motion initiates. A side impact event that results in
little or no rotation about the vehicle CG may
indicate a high likelihood of interaction with the
middle third of the vehicle leading to potential
compartment intrusion.

Group 2 parameters were selected for optimized
performance of each model by crash mode. In Table
8 below, variables selected for the Group 2 frontal
model are shown. In addition, Table 9 contains
parameter estimates and standard error values for
logistic regression models predicting MAIS3+ injury
and ISS level respectively. Variable selection and
model parameters for each remaining crash type are
given in Appendix Table A3 of this text.

Table 8. Group 2 Model Variables
Variable Description

DELTAV Tot. DeltaV- High Severity Event
BELT 3-Point Belt Usage
BDPLY Airbag Deployment
MAXC1 Maximum Exterior Crush 1 (in.)
MAXC2 Maximum Exterior Crush 2 (in.)
NARROW Narrow Object Collision
INTRUS Intrusion Near Occupant (in.)
SQR_AGE Occupant Age Squared
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Table 9. Group 2 Parameter Estimates and
Standard Errors

Model
Type

Parameter
(Frontal)

Estimate Standard
Error

P(MAIS3+) Intercept -4.1442 0.1426
Deltav 0.0875 0.00696
Belt -0.8949 0.0895
Bdply -0.0205 0.0931
maxc1 0.0182 0.00632
maxc2 0.0404 0.016
Narrow 0.3144 0.1145
Intrus 0.109 0.00956
EJP 0.8661 0.3985
sqr_age 0.000309 0.000023
Strim 0.2858 0.1231

ISS Value Intercept 0.31007 0.04853
Deltav 0.05735 0.00273
Belt -0.4282 0.03424
Bdply -0.0442 0.03156
maxc1 0.00918 0.00251
maxc2 0.03054 0.00634
Narrow 0.16194 0.04938
Intrus 0.08729 0.00427
EJP 1.07523 0.19755
sqr_age 0.00013 .00008
Strim 0.43479 0.05773

MODEL PERFORMANCE

NASS/CDS 2000-2001 data and CIREN census files
were used to evaluate the accuracy of each proposed
model. Below, the performance of logistic regression
models predicting the likelihood of MAIS3+ injury
are presented in the form of ROC Curves. In
addition, overall prediction counts for each crash
mode are reported for each population tested. A
similar evaluation of each linear regression model
predicting ISS was performed; however, results of
this analysis are not reported here.

For the purpose of future ACN technology, the
communication of injury likelihood values (i.e. 0-
100% risk of MAIS3+ injury) offers a more intuitive
indication of injury risk than linear models predicting
ISS. Although ISS models were discovered to yield
somewhat more accurate injury predictions, MAIS3+
injury predictions are focused on here.

NASS/CDS

Each of the NASS/CDS populations tested is
independent of the cases used to initially train the

regression models. The distribution of crashes in the
2000 and 2001 NASS/CDS population includes a
sample of 9,351 tow-away crashes representing a
total of 4,745,144 occupants following weighting.
This includes 3,122,193 drivers and 1,622,952
passengers. Appendix Table A1 shows the annual
distribution of injured occupants by mode for the
tow-away crash population.

It should be noted that the occupant counts for each
of the four categories of planar crashes (frontal,
nearside, farside and rear) do not include any
occupants involved in rollovers or complete
ejections. For this analysis, the occurrence of these
events are not simply considered to be characteristics
of other crash types but are serious enough to
independently warrant rapid deployment of rescue
services.

Within Appendix Table A1, the population of injured
occupants involved in rollover events may include
occupants who are completely ejected. However, the
ejected populations listed do not include occupants
who were involved in a rollover event at any point
during the crash. Occupants involved in tow-away
crash events where MAIS level is known are listed
only once in Appendix Table A1.

Figures 4-7 show sensitivity and specificity values
for each model by crash mode. To evaluate the
overall accuracy of each model, classification rates
were determined at a single MAIS3+ injury risk
threshold value. These threshold values were
selected through an evaluation of each respective
ROC curve by mode. To select an injury risk
threshold value, a point on each curve was identified
where variation in threshold value led to equivalent
changes in model sensitivity and specificity. The
approximate slope of the ROC curve at this point is
equal to one. The selection of this threshold value
equally favors model sensitivity and specificity. For
other applications, selection of this value must be
made based on intended model application and
tolerable false positive and false negative predictions.
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Figure 4. Group 1 and 2 Frontal Model
Performance Curves (with probability thresholds)
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Figure 5. Group 1 and 2 Nearside Model
Performance Curves (with probability thresholds)
 

Far Side Model Performance
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Figure 6. Group 1 and 2 Farside Model
Performance Curves (with probability thresholds)
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Figure 7. Group 1 and 2 Rear Model Performance
Curves (with probability thresholds)

Table 10. Group 2 Model Performance at Selected
Threshold Values (probability of MAIS3+ Injury)-
NASS/CDS 2000-2001

Mode Cutoff
Probability

Sensitivity 1-
Specificity

Frontal 19.2% 70.1% 11.2%
Nearside 29.7% 80.7% 18.0%
Farside 17.0% 78.3% 14.3%
Rear 8.4% 71.4% 11.2%
Total 74.2% 12.5%

Using threshold values (cutoff probabilities) as
shown in Table 10, the overall sensitivity and
specificity rates are shown by crash mode for the
NASS/CDS test populations. If threshold values
were shifted, model sensitivity and specificity
parameters would vary in a way described by their
respective ROC curve (Figures 4-7).

CIREN

The CIREN population includes 1,058 cases stored in
NHTSA's database that are complete and available to
date. This includes 762 drivers and 296 passengers
involved in crashes where an occupant was
transported to a Level I trauma center or was fatally
injured. Within Table 10 below, prediction rates for
Model Group 2 variables are presented. Within the
CIREN crash population, too few rear impact crashes
result in serious injury therefore model accuracy for
this crash mode are not reported.
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Table 10. Group 2 Model Performance at Selected
Threshold Values (probability of MAIS3+ Injury)-
CIREN Cases

Mode Cutoff
Probability

Sensitivity 1-
Specificity

Frontal 19.2% 86% 41%
Nearside 29.7% 90% 27%
Farside 17.0% 65% 33%
Rear * * *
Total 86.1% 39.6%

DISCUSSION OF RESULTS

During this study, two crash models of varied
complexity were created to evaluate the benefit of
multiple model parameters for injury prediction
compared to models based soley on deltaV. Overall,
model groups 1 and 2 significantly improve the
accuracy of injury predictions; however, this
improvement depends heavily on crash mode.

For frontal crashes, a 17 mph deltaV threshold
correctly identifies 66.8% of MAIS3+ injured
occupants with a false positive rate of 20% (uninjured
classified as injured) when used alone. For Model
Group 1, prediction rates improve somewhat where
70% of MAIS3+ injured occupants are detected with
a false positive rate of 20%. The true benefit of
additional model parameters can be recognized for
the optimized Model Group 2 where 79% of MAIS3+
injured occupants are detected with a false positive
rate of 20%.

For nearside collisions, deltaV alone provides better
predictions of injury risk than those including
additional attributes. For this crash mode, knowledge
of restraints usage provides little information to
assess injury risk. Although intrusion data provides a
good indication of potentially harmful interaction
with occupants, its inclusion in model Group 2
provides little improvement to model accuracy over
deltaV alone.

For farside collisions, an 18 mph deltaV threshold
correctly identifies 78% of MAIS3+ injured
occupants with a false positive rate of 20% (uninjured
classified as injured). For Model Group 1, prediction
rates decline somewhat to where 72% of MAIS3+
injured occupants are detected with a false positive
rate of 20%. For the optimized Model Group 2, 85%
of MAIS3+ injured occupants are detected with a
false positive rate of 20% for farside crashes.

For rear impacts, little benefit is observed when
additional model attributes are considered (i.e. model

group 2). It was discovered that model accuracy is
degraded when addition parameters beyond deltaV
and restraint usage are considered. In addition,
standard errors for each reported estimate are high for
this crash mode due to a limited population of
severely injured occupants during rear impact
crashes.

In total, the proposed models correctly identified
74.2% of the MAIS3+ injured occupants involved in
tow-away crash events for NASS/CDS Cases from
2000 and 2001. 12.5% of the uninjured population
was incorrectly classified as injured for this
population. The thresholds selected for injury
classification varied based on crash mode as shown in
Table 10; however, the selection of this cutpoint must
be made based on intended model application.

Applying threshold values as shown in Tables 10 and
11, each model was applied to recognize seriously
injured occupants within the CIREN census. A
model sensitivity of 86.1% and a specificity of 39.6%
was found during classification of uninjured and
injured crash involved populations.

As indicated by the low specificity value for this
population, the number of false predictions for non-
injured occupants within the CIREN sample far
exceeds those for the NASS population. This occurs
because each case included within the CIREN census
was considered due to its high severity. It is likely
that cases where no severe injury occurred and an
occupant was brought to a Level I trauma center
would have severe crash attributes compelling rescue
providers to suspect injury based on apparent
mechanism of injury. Interpretation of these severe
characteristics (i.e. high deltaV, high crush, intrusion,
old age) by injury predicting algorithms would
naturally produce elevated indications of injury risk
when, in fact no injury took place for these
individuals. These missed cases suggest the need for
improved estimates of occupant injury tolerance
within proposed crash models.

CONCLUSIONS

It is well understood that rapid notification of rescue
services and appropriate administration of medical
care will reduce the likelihood of secondary injury or
death of crash involved occupants. Methods to
process crash conditions in order to estimate the
likelihood of injury have been established and the
accuracy of these methods has been reported. When
compared with injury prediction based on deltaV
alone, proposed models were shown to improve
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accuracy of injury estimates based on crash attributes
available at the time of the crash.

For the NASS/CDS populations tested, the sensitivity
of models predicting the likelihood of MAIS3 and
higher injuries is 74.2% with an overall specificity of
87.5%. When compared with predictions based on
deltaV alone, the use of proposed models offers a
more accurate estimate of injury potential based on
readily available crash information for frontal crashes
and farside crashes. This improved accuracy is not
readily observed for nearside and rear crashes.

In order to make use of any injury model including
those based only on deltaV, methods to automatically
collect and deliver crash information to the most
appropriate individuals must be implemented. This
effort will require continued cooperation between
auto manufacturers, rescue providers and in hospital
clinicians to collectively agree upon the most
appropriate methods to reach this goal.
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APPENDIX 1. ADDITIONAL TABLES

Table A1.
NASS/CDS 2000-2001 and CIREN Case Injury Distributions (test populations)

CIREN MAIS 0 MAIS 1 MAIS 2 MAIS 3 MAIS 4 MAIS 5 MAIS 6 Fatal

Frontal 46 128 355 81 39 0 100
Nearside 2 16 63 38 23 0 33
Farside 2 7 13 12 5 0 10
Rear 0 2 5 2 3 0 1
Rollover 2 7 19 10 6 3
Ejection 0 1 10 4 3 0 7
NASS/CDS MAIS 0 MAIS 1 MAIS 2 MAIS 3 MAIS 4 MAIS 5 MAIS 6 Fatal

Frontal 1,060,732 819,312 83,314 28,223 5,200 2,484 36 8,845
Nearside 86,115 98,504 8,941 5,558 1,548 516 0 4,003
Farside 101,344 76,514 7,950 2,183 670 161 12 1,122
Rear 195,990 124,381 6,262 608 538 63 0 397
Rollover 150,687 203,556 32,822 11,452 5,111 1,218 0 8,394
Ejection 70 1,830 4,066 3,268 2,554 315 0 1,976

Table A2.
Logistic Regression Parameter Estimates for Model Group 1 (predicting probability of MAIS3+ Injury)
Parameter
(Frontal
Crashes)

Estimate Standard
Error

Pr>ChiSq Parameter
(Nearside
Crashes)

Estimate Standard
Error

Pr>ChiSq

Intercept -3.7089 0.0952 <.0001 Intercept -3.8684 0.2151 <.0001
Deltav 0.124 0.00374 <.0001 deltav 0.1887 0.00987 <.0001
Belt -0.8011 0.0652 <.0001 belt -0.2758 0.1284 0.0317
Bdply 0.03 0.0762 0.694 bdply 0.2462 0.1829 0.1783

Parameter
(Farside
Crashes)

Estimate Standard
Error

Pr>ChiSq Parameter
(Rear
Crashes)

Estimate Standard
Error

Pr>ChiSq

Intercept -3.8313 0.2376 <.0001 Intercept -4.8063 0.3885 <.0001
Deltav 0.1476 0.00997 <.0001 deltav 0.1395 0.0134 <.0001
Belt -1.1858 0.1591 <.0001 belt -1.1032 0.2738 <.0001
Bdply 0.1117 0.2206 0.6126 bdply 0.4726 0.5004 0.3449

Table A3.
Logistic Regression Parameter Estimates for Model Group 2 (predicting probability of MAIS3+ Injury)
Parameter
(Frontal
Crashes)

Estimate Standard
Error

Pr>ChiSq Parameter
(Nearside
Crashes)

Estimate Standard
Error

Pr>Chi
Sq

Intercept -4.1442 0.1426 <.0001 Intercept -5.989 0.3173 <.0001
Deltav 0.0875 0.00696 <.0001 deltav 0.167 0.0122 <.0001
Belt -0.8949 0.0895 <.0001 belt -0.2638 0.1439 0.0668
Bdply -0.0205 0.0931 0.8256 narrow 1.099 0.2467 <.0001
maxc1 0.0182 0.00632 0.0039 intrus 0.0996 0.0126 <.0001
maxc2 0.0404 0.016 0.0113 EJP 1.2517 0.3621 0.0005
Narrow 0.3144 0.1145 0.006 AGE 0.0401 0.00335 <.0001
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Intrus 0.109 0.00956 <.0001 FEMALE 0.0525 0.1338 0.6947
EJP 0.8661 0.3985 0.0298
sqr_age 0.000309 0.000023 <.0001
Strim 0.2858 0.1231 0.0202

Parameter
(Farside
Crashes)

Estimate Standard
Error

Pr>ChiSq Parameter
(Rear
Crashes)

Estimate Standard
Error

Pr>Chi
Sq

Intercept -4.7765 0.5135 <.0001 Intercept -4.2287 1.1063 0.0001
Deltav 0.1557 0.0114 <.0001 deltav 0.1445 0.015 <.0001
Belt -1.2287 0.1846 <.0001 belt -1.2112 0.3179 0.0001
intru18 1.2028 1.061 0.2569 AGE 0.0147 0.00935 0.1162
EJP 1.3693 0.5745 0.0172 occht -0.0215 0.0174 0.2171
AGE 0.0245 0.00449 <.0001
Bmi -0.0154 0.0168 0.3592
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