

Objectives

- Determine the current status of detailed computational models of the neck
 - Component models
 - Full body models
- Develop a modeling strategy for studying carotid artery injury mechanisms in lateral impacts

Methods

- Literature review of computational models of the neck in publicly available sources
- Model features and validation test results from journal articles and publications
- Usefulness of model for neck response in lateral impacts gauged from available information
- Models recommended that will offer the best kinematic response of neck

Component Neck Models

- Detailed design of local neck geometry and interactions
- Computationally more efficient then full body models
- Difficult to setup positioning of occupant in vehicle interior with accurate restraint conditions

Halldin

Component Neck Models

Author		# Elements	Loading Conditions	Advantages	Disadvantages
Nitsche	PAM- CRASH	1852 Solid; 86 Membrane	Front; Lateral; Axial	Good validation results	No musculature; No full body
Yang	PAM- CRASH	11,498 Solid; 3071 Shell	Front; Rear; Axial	Detailed geometry; Passive neck muscles	More validation required; Full body not complete
Deng	LS-DYNA	Unknown	Frontal	Detailed geometry; Active neck muscles	More validation required; No full body
Chancey	LS-DYNA	639 Rigid; 448 Deform	Axial	Active neck muscles; Good axial validation	Only axial impact; No full body
Van der Horst	MADYMO	N/A	Front; Lateral; Rear	Good validation results; Active neck muscles	No FE techniques for better local response

Full Body Models

- · Duplicate positioning of occupant in vehicle interior
- · Replicate response of occupant in lateral impact
- Extract kinematic response from model for use in local soft tissue model of neck

THUMS Neck

- · Published by Iwamoto
- Accurate FE geometry
- · Active and passive muscle effects
- · Thorax and spine segments have been validated for lateral impacts
- Integrated into 50th percentile full body model
- No published overall model validation to lateral impacts

Neck Tissues

- No component or full body model has soft tissues of the neck modeled
- Soft tissue = important for lateral impacts
- · If present, muscle elements do not have contact characteristics, only tensile properties
- Most finely meshed component or full body model is too large for meaningful FE model of carotid artery

Approach (in progress) for creating FE model of carotid

- Visible human data for soft tissue geometry
 - Exceeds accuracy and detail of MRI/CT
 - Compatible with most human body models which were also created using this dataset

Suggested measurements

- Load in belt
- · Pressure in carotid (Millar)
- · Kinematic measurements
- Measures of neck extension outer skin above carotid – correlate to carotid strain?
- Tensile loading mechanism important?

Suggested testing

- Stiffness of tissues between bony structure and skin of neck
- · Tissue level material testing
 - QLV? Step and relaxation? Rate effects?
 - Lee, Haut (80's, GM) strain rate no effect on peak load or stiffness in jugular – axial
 - Monson et al (2003) ASME human carotid no effect over 4 orders of magnitude

Testing Methodologies

- (from literature on testing arteries)
 - as suggestion
 - Loop tests
 - Burst tests
 - Axial tests

Approach

- SIMON-esque approach to evaluate carotid injury.
- Anatomical FE landmarks on a whole body model to drive some component model containing the carotid.
- A more detailed model of carotid geometry and surrounding bony/soft tissue geometry would then be used to evaluate carotid injury.
- Allow one to incorporate the benefits of modeling at a finer level for specific injury mechanisms, but still keep the usefulness of a whole body simulation.

The End

- · Thank you!
- · Questions?