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FOREWORD

This document is one of four manuals that constitute the final report
‘of the research projecf conducted under Contract No. DOT-HS-6-01300 for the
National Highway Traffic Safety Administration. Dr. John T. Fleck and
Mr. Frank E. Butler of J § J Technologies, Inc. served as Principal Investigator
- and Project Engineer; respectively, during their earlier tenure as members of
the Calspan Transportation Research Dgpartmenf. Subsequently, Mr. Norman J.
DeLeys coordinated the efforts of?Calspan and J & J Technologies, Inc., who
was retained as a subcontractor té méintaih the continuity necessary to

- preparation of the report.

The Contract Technical Monitor for this project was Dr. Lee Ovenshire

- of the National Highway Traffic Safety Adminisfration.

This report has been reviewed and approved by:

N g

L bty ~ N S T Y

.Anthony L;'ﬁusso, Head
Transportation Research Department

Clidioc
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General Notation

Due to the large number of variables used to develop and derive

relationships in this volume specific notation is defined in the section where

it is used. In many cases, variables which are_defined in one section. may have

a different definition in another section.. For example, the symbol j’ is used

for the shortest vector from origin to the plane, it-is also a vector defining

the specified fixed distance in the fixed distance constraint, and it is also

used as the friction coefficient for the sliding constraint. The following is

a list of nomenclature which is used extensively throughout Volume I.

Ellipsoid matrix
Direction cosine matrix for the nth segment

Constraint force on the nth segment applied at
joint 4

Identity matrix

Unit vectors defining orthonormal inertial
reference system

Mass matrix of the nth segment
Total number segments

Subscript used to define the nth arbitrary
segment

Constraint force (position, sliding and rolling)
Vector from ellipsoid center to ellipsoid surface

Location of joint_i in the local system of segment
n.

Unit vector normal to a plane



Independent variable of integration

Vector position of the c.g. of segment n in
inertial reference -

~Inertia matrix for the nth segment

Angular velocity vector for the nth segment
in n's local coordinate system

xi-



SECTION 1 .
INTRODUCTION

In 1970 Calspan Corporation (formerly Cornell Aeronautical Laboratory,
’ Inc.) began deveiopment of a mathematical model for simulating the three-
dimensional dynamic reéponses of a motor vehicle crash victim. Under the joint
sponsorship of the Motor Vehicle Manufacturers Association (MVMA) and the '
National Highway Traffic Safety Administration (NHTSA), the original develop-
menf and validation of the program was accomplished in two phases (Ref. 1 and
2). Exéépt for a special version of the Phase II crash victim simulation (CVS)
program created for the MVMA (Ref. 3), the next major developmental effort was
accomplished for the NHTSA and resulted in what was designated as the CVS-III

computer program (Ref. 4).

Recognizing the CVS-III as a potentially valuable tool for aiding
studies of crew member dynamics during ejéction from high-speed aircraft, the
Air Force Aeraspace Medical Research Laboratory (AFAMRL) sponéored'the development
cf a special version of the program that formed the basis of the AFAMRL
"Articulated Total Body'" model or ATB (Ref. 5). Later, the ATB model was updated

and some new features were added under another contract with the AFAMRL (Ref. 6).

This report documents work performed in the research project entitled
"Vali&ation of the Crash Victim Simulator' under Contract No. DOT-HS-6-01300 with
‘the NHTSA which states the general objective as ﬁthe development of the CVS to
a level that it can be used for a variety of'rulemaking activities.”" A signifi-
cant goal was ''to conduct studies that specifically, quantitatively and validly
pertain'to the Part 572 dummy in several realistic crash safety compliance test
situations." The project consisted of two principal areas of effort: (1)
further development, improvemént and refinement of the computer program,
culminating in a version designated as the CVS-1IV, and (2) tﬁe performance of
detailed measurements and tests to define inputs for modeliﬂg the 50th percentile
male dummy conforming to government spécifications (Ref. 7) and executing computer
simulations of experiments perfbrmed with the dummy to examine the validity of

the model results.



The CVS-1IV version of the computer program incorporates many
modifications and features developed in this project as well as in conjunction
with other closely related research studies (e.g., Ref. 5, 6 and 8). Among

the improvements implemented in the CVS-IV are the following:

e a new, more efficient integration technique.

e a routine to automatically position a seated occupant in
equilibrium. A . .

e an advanced harness belt formulation that treats interaction of
belts connected at a common junction point, belt_slippége on
deformable segments, and allows use of rate—dependeﬁt functions
for calculation of belt forces. v ' ‘ ”

e simulation of aerodynamic forces acting on body segments that may
be partially shielded. ,

e improved routines for calculating joint torques.

e - use of the main program integrator for compufing vehicle énd air
bag motions. ' ” .

e the ability to specify the motion of as many as six segmeﬁts.

o‘ a provision to account for segment principal axes that afé not
coincident with geometric axes, thereby allowing use of any convenient
geometric axis system as the reference for segment input data.

e ‘generality in specifying axes about which segments are rotated,
and the sequence of rotations, to achieve a desired initial
orientation. - ’

e elimination of the need for multiple output units.

e routines for computing injury criteria values (HIC, HSI, and CSI)
and for plotting any output variable(s) against any other Vériable

or time.

During the course of the present study, several interim veiioﬁs of
the computer program were distributed to numerous users throughout the world.
. However, it should be noted that the modifications of each versiqn were incor-
porated in such a way that, in most instances, input data decks remained upward

compatible and useable with successive versions of the program.

2



~The final report of this project is composed of four volumes:

Volume 1 - Engineering Manqal’- Part I: Analytica1~Formulétion
. Volume 2 - Engineering Manual - Part II: Validation Effort
Volume 3 - User's Manual | ‘
Volume 4 - Pfogrammer's Manual

Volume i descfibeé the analytical formulations, assumptions and the
detéiled development of the mathematical equations and relations used in the
program.* Volume 2 documents the measurement of the dummy geometric, inertial
and joint characteristics and experlments performed to validate computer models
of the physical systems.tested. The experiments simulated include static tests
of an ellipsoidal air bag to check the validity of the idealized bag shape and .
force algorithms, dynamic pendulum impact tests of dummy component sub-assemblies,

and impact sled tests in which the dummy was restrained by an air bag and a

three-point belt restraint system (Ref. 9). The third volume provides instruc-
tion on how to use the p:ogfam. .Besides givihg a detailed description of éll
data furnished on each inpﬁt card, it explains the special input and output
features and provides examples of program applications along with the Job Control
Language needed to execute a simulation run. Volume 4 is intended primarily

for use by pfograﬁmers interesfed in the detailed structure of the program.
Included in Volume 4‘aré desciiptions of each subroutine, cross reference charts
showing the subroutines called by 6therksubroutines, labeled common blocks used
by each subroutine and usagé of each variable in the labeled common blocks in

every subprogram, and a complete listing of the éomputer Fortran source deck.

* See also Reference 5 and 6 which document the analyt1ca1 formulation of some
algorithms ‘and features not decribed in detail herein.




SECTION 2

GENERAL MATH AND GEOMETRY RELATIONSHIPS

In order to assist the reader in understanding the theoretical
development of the equat'ions used in the program, a description of general
mathematical notation and basic geometricai relationships is presented.

This includes discussions of the coordinates and vector / matrix notation
adopted, basic equations for defining planes and ellibsoids and the relation-
ship between rotations, quaternions and direction cosine matrices. Finally,
this section concludes with a discus sion of a method for determining y.aw,

pitch and roll angles from the direction cosine matrix.

2.1 COORDINATES AND VECTOR / MATRIX NOTATION

In the development of the program, it was convenient to use
a matrix notation because it bears a one to one correspondence with the

'coding. For example, consider figure 2.1 below

SEGMENT m

Figure 2.1 BASIC COORDINATE: SYSTEl\'iS

- 1location of c.g.as measured in the inertial reference
location of a point in segment m in m's local reference

location of the same point in inertial reference

<inix



Each of the quantities X, I“,‘? have three components and are

considered as column vectors (a 3 x 1 matrix) thus (the bars are deleted.)

X, . rl ' YI
X =[x, r=|mg Y= 1y, )
A3 £ 3 (2.1)

In standard vector notation write the following:

=}
n

X, T+ X, 7+ X, K

rl z’m+r27:m+r3km

Al
0

Y=Y, L+ Y4+ Yk
,(,,, (2.2)
where i, J, k are unit vectors along the axes 1, 2, 3 of the inertial reference

-
and i i i, lz:n are unit vectors along the axes 1,2, 3 of the local reference.*

Unless otherwise stated we assume all references systems are right handed

orthonormal systems. Thatis

.‘ ‘* .* e -l —l
;\.[:}-;:k.k:/
Z'.‘7'= 7-; =—l‘.‘/-(.=0 .
| | + = L (2.3)
- where .'' o "' represents the dot (scalar) product, and that
Toj-F,jok-7 , For-f
i@i=j0j=kok =0

(2. 4)

where.@,’designa’ces the cross (vector) product.

The direction cosine matrix, D, is the 3 x 3 matrix which con-
verts the components of a vector as measured in the inertial reference to its
components in the local system, thus the 3 x 1 matrix resulting from the
multiplication operation Dx would be the components of x as given in the

local system,

* Alternate notation which is often used is the expression of a vector in terms
of the unit basis vectors X, X, X3 0T & éz ,és . Then a compact notation for
‘F

thé vector, ¥X-= Z xr P or K é
p=t .. PP




Note that the unit vectors are related by

oy

{

_Zn
dm | = Dm
Am (2.5)
Explicitly writing D in terms of its components yields
dli dlz d/’
D = dyy dyy ds
J.?l ‘/32 d33 (2.6)
m
Note also that,
: im a" - im K - ’M )
Dy = { Gom ffﬂm K* bm
L. ‘ K’, j . 'k.m K ° 7(—,” oo
(2.7) .

Since the dot product of two vectors is the product of the
magnitudes times the cosine of the angle between them,the dot product -l.. i,
is the cosine of the angle between the vector 2'-,,, and the vector ? Thus each
of the components of D is the cosine of the angle between the respective unit
vectors, hence the name direction cosine matrix. Since the direction'cosiné

matrix is orthogonal, the inverse of D, D_]', is the transpose of D, DT.

i.e. D1 =0T

hence pp! = pTp- I, the identity matrix. >(2.'8)

To obtain the transpose of a matrix interchange the rows and columns: if

dm?; are the elements of D and Qm"are the elements of D tranépose,

[

d‘m‘n: Q"llﬂ o (2.9)



In vector notation, it is permissible to write the expression

X+7 =7

) _ (2.10)
but in matrix notation it is not permissible to write '
X +r =Y _ ,
. (2.11)
because this would imply that -
X; + rz = Yz
X3.+ T3 = Vs (2.12)

which is true only if all three quantities have been expressed in the same

reference system.

The proper relation is

-1
X+ D r =Y

: (2.13)
or equivalently
X +Dr=yY
or in the local reference sy‘étems
- DX+ v = DYy
. , : , (2.14)
For example, substituting equation (2, 2) into (2. 10) yields,
X, T4 K, 5% Kgh 40 g+ Fyfm*+ 5 K _
1 4 3 m 2 4m 3 Kom
o ' . - (2.15)

o - -

=Y,1+Yzj+)’,lt




Examining (2.15) shows that it is incorrect to say x; + T =Y since %) and v,

——t—

multiply i, and T, multiplies im, and i is not necessarily equal to i -

But from 2.5 we get

[M = d,, { + d,:L'f' d”!‘.
b ad - .
i dyy L dzz{_ + dn_"_
kp= dy 0 + dg 4 + d,z k
(2.16)
hence - - . '
Nimth dmt iy bom = (dﬂ",*durz"'du vy )i
+(dis v, + dy, ¥y +dga r,)?
+ (dy, 1, +dyg vy +dsymy Yk
(2.17)

It can now be recognized that the quantities muitiplyihg i, j» k are the

quantities obtained from the matrix operation

dy dy dy *y

-
Or = dyy  dy 3, s
d]s dzs das "a

(2.18)
Hence the validity of equation (2.13) is established.

Dot Product
In matrix notation the dot product of x and y is the sum of the
products of the respective components when given in the same coordinate

system, hence

XeY = X, % + X, + X, ¥,
Note that ) .
XY = xTy = vy.-x = yTx (2.19)
since XT = (x, , Xs5 X5 ) (2.20)
and Y
. 1
xTy = [XI xé xs) Y, T XY, XY, XY,
Y (2.21)



In vector notation

X X

. r -is a valid expression, but in matrix notation
- .

is invalid a.nd must be written as

X 0'r orX olr.
r=X- (Dr) X707 = XDr-(DX)r—(Dx),- ' 222)
here use the matrix identity R - DU
T T.T . ' .
B) =
(#8) 2 A ' (2.23)

Note that in 2.22 parentheses have been used to avoid confusion on the-order

of operation.

Also note that the notation xe is equivalent to xT, hence,

it would make sense to write A+ B for AT B,where A and B are matrices for

which the product AL B is defined.

2 2 , ' ,
Since " X<X = X, + X: + X; the magnitude of x is defined as

x| = S0

(2.24)

Cross Product

The cross product of two vectors x, y is des:.gna.ted by X@y

and may be obtamed frorn 2.2 and 2.4, thus

]
N

)?.@7 (X/ "'Xz}' +X,k)9(>$7+>’z;+”s
o 1

=X, z@z + XY L@F + X, Vs

* XY, F®i ]
+X3¥, K@ + X%, K®F + x5 Y,



where the fact that a@b = -b® a has been used.

Note that the final result in 2.25 is the expansion of the determinant

£ ¢ kK
Xy Kz Xg
Y, Y. ¥ (2.26)

The components of x.and y must be expressed in the same coordinate system.

In matrix notation the cross product is

X®Y
4 o (2.27)
with the same meaning. That is if
xg YI
X = X, Sy ¥ = Yz‘
. Xs -\
t hen . _
XYy = X3 ¥,
X@®Y = X3Y,-_x, Ys '
: X, Y, - X, i
'z 2 (2.28)
Note that X ® may be defined as the matrix
. o X3 X
"xz x' o R T
S o _ (2.29)
Since . 0 -Xg X Y, X, Yy = Xg Y
cX®Y =] X3¢ 0 X Y, = Xe ¥y = Xz Ygq
~X2 Xy 0 Ys Xp ¥y = Xa 1
This is analgous to our use of X+ as X’ -
| 7
Xy
i.e. X'=(xl'xz)_x3)" X, = X7

Also note that
(2.30)



Matrix notation permits the assignment of a definition to the operator X @ ,
(i-e. the matrix as defined in 2.29) whereas in ordinary vector anaiysié

X ® has no meaning by itself.

This is useful in later work where it is convenient to consider an expression
like ‘ ’
| ~-h®(h®

_ _ : (2. 31)
here hy
W 'ere - } h - /42 .

and h® is defined by 2.29.

To make sense of expression 2.3] consider the following identity
a ®(b®c) = (a-c)b~(a-b)c
Then if @ =b«h and” c=y , the following results '

-h®(hey) = (h-h))’_—h(bo;’)

which can be writtenas - -

h®(hxy)=(hThT-hhT)y
' Thus -H@(Hé =h7'h1'_-f;}q7 is a matrix

If hTh=1 (aunit vector) then

A-h@(h@ = _'r-h,hT»' | (2.32)

and _
“h@(h®@Y)= Y-h hey

This may be recognized as a projection of y on a plane perpendicular to h,

thus I-hhtis a projection operator (matrix),

11
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2.2 GEOMETRIC RELATIONS

PLANES. Planes are used extensively in the program for

modeling various surfaces in or on the vehicle.

L)

Figure 2.3  PLANE COORDINATES

Points which lie in a plane satisfy the linear relation

ax, +bx, +cxg=d
_ » ’ . {2.33)
where a, b, ¢, d are constants and Xy X x3‘are components of the vector

x which is defined from the origin to the point in the plane.
Let F'be the vector which locates the point in the plahe which is nearest to

the origin; hence P must be perpendicular to the plane and Iﬁl is the distance

of the plane from the origin.

13




It is convenient to define the plane by the unit vector

% = ‘./IF;I " and the distance g = |g| - (2.34)
Therefore ' o
ry a ry - —
= L —————6 P —c k
ya*+b*+ct Ya*+b6*+e* Ya*+b*+c*
(2.35)
The equation of the plane may then be written as ’
- X=p ,T-T=t (2.36)
or
t-X =t x=4g8 in matrix notation.

Note that a vector which is parallel to the plane satisfies +.X=0

Contact Planes

Contact planes in the program are defined as follows.

Figure 2.4 DEFINITION OF PLANE SPECIFICATION -

The user inputs the coordinates of three points P2

7 ,/g ,G which lie in thg

T .
plane (P; = (xi,yi,zi), i=1,3).

14



The program »mputes the unit vectors (this is done in sub-
routine SINPUT)

q, =
b T, ) @ (yp -

ﬁl X (Pz-pl)‘

(Note - these are matrix equations)

Since ?2 and 73 lie in the‘pla.ne, '?, is a unit vector noi‘nial (perpendicular)

to the plane.

It also computes

2 A= A
?x"; = A,
$3° G = 8

The equation of the pl;ne is also given byl‘ 24 and £ ; that is

a point x lies in the plane if
?’ X = ’ﬂ,

To establish contact, it is important to establish whether a point has pene=~
trated the plane (in back of the plane) or if a point has not penetrated the

plane (in front of the plane. )

The direction of ¢4, i8 used to define the front surface. Hence
if ?, - X > ,5,,‘ x is said to be in front of the pla'n:“ié: and if 2y X <ABy» 'x'is said
to be in back of the plane. The plane is given a finite size by accepting points
which satisfy: ,

0<ay - x =8, <]ay @,k 0<ay  x- 8;< lag 5Py
as points which are in the boundaries of the finite plane.

15




Acceptable points are illustrated as the shaded area in the

following figure.

The recommended procedure for defining a planar surface

is to use points such that F,-F is perpendicular to P, - £, as in the following

3

P Pe

figure.

WY
b I,

\
\

&

The acceptable region is then a rectangle with F, £, /’3 :

on the corners.

Note that in the above figure the front side would be the side
seen by the reader. If , and F, were interchanged, the reader would be

' viewing the back side.



ELLIPSOIDS. Ellipsoids are used throughout the program

for modeling the contact surfaces of the body and other curved surfaces such

as the air bags or interior surfaces of the vehicle.

Figure v2.5 ~ ELLIPSOID GEOMETRY

Consider an ellipsoid whose principal'axes are aligned with the reference

system. Points r and the ellipsoid centered at.£ satisfy the relation

: 2 . 2 2
| ( rz”‘:) <"z"‘z ) (’3"'13) |
_ )t | +t ] =
@y @z \ és (2.37)
where . ' ’ R '
/] ' <4,
&2 L, and a,, @,, @z are

the semi axes lengths.

17




This may be written as
(r-£) -A(r-£)=1 |
' | (2.38)

1L 0 0
where A is the matrix af
1
- — 0
A = o a2
1
° 9 af (2. 39)

For convenience in the following discussion let the center be at the origin

(,Q =O) . This places no restrictions on the development.

The ellipsoid equation is then written

r-Ar =1
: - (2.40)
If the reference system is rotated by the direction cosine matrix D such

that
r =Ds

" (2. 41)
then 4 .
r-Ar= S DTADS = §+(D'TAD)S = S-BS=1

(2.42)
where B=D’Ap , is the matrix de scribing an ellipsoid whose principal
axes are oriented by the rotation specified by the direction cosine matrix D

with respect to the reference system of S.

Note that A is a real positive definite matrix and hence B
is a real positive definite matrix. (i.e. positive real eigenvalues.)
Thus 2.40 may be used to represent a general ellipsoid with the restriction

that A be a real positive definite matrix.

18



\.
Consider a general point X

if X-AX > 1 . the point is outside of the ellipsoid
if X-AX < I the point is inside the ellipsoid
if X-AX =1 the point is on the ellipsoid.

_ . \ (2.43)
(remember that x is the vector from the center of the ellipsoid to the

' po1nt X)

Consider a poi‘nt r on the ellipsoid.
"Ar.is a vector wh1ch is perpendlcular to the surface at the

~ point i‘ ' The outward normal is then
= Ar /I Ar]
(2. 44)

A plane tangent to the surface at the point r would then be
defined by the vector t and the distance, g, , of plane from the center of
the ellipsoid is; '

By = r-t=rAr/lAr| = %Arl’

. : . (2.45)
In words, the distance of the tangent plane at the point r on the ellipsoid to

the center of the ellipsoid is l/lA"l o

2.3 - ROTATIONS, QUA'I‘ERNIONS AND DIRECTION COSINE
MATRICES

‘ A direction comne matrix is assigned to each segment to
indicate the angular orientation of the segment. The direction cosine
matrix is updated during 1ntegrat1on by use of a quaternion (Eq. 2.69).
The integrator integrates the quaternion equation (Eq. 2.70). Rotation,

Quaternions and Direction Cosine Matrices are discussed in this section.




2.3.1 Rotations in 3-D Space

, Any rotation in three dimensional space may be considered
as rotating a vector b about an‘axisF through an angle € in the plane that

is perpendicular to £(.

Figure 2.6 ROTATING A VECTOR

Let R be the operator (matrix) which performs the rotation

, :
| b = Rb (2.46)
. R may be expressed as SR
R= uTy cose(I-,u,u.T)}sine,Q ®
(2.47)
- where ' Moo u =1
and I is the identity matrix. -
From Figure 2.6 write
b'= 3¢ + ad + db’ (2. 48)

20



where
0¢ = uuTh = A(E-5)
C—:/ = .cosle (I-/-(/u.r)é = COSQI(Z.'/::(/_Z.Z.))
db'= sin & u®@b =sine Zeb

Note that

(52(z.2))-(5-2¢as))

(Zok) - (z0b)
5.5 -(z.3)° © (2.49)

The inverse operation (rotation through an angle -6 ) is

R ’=/u/u7'+ cos € (I-pu”)- sin6 u@

(2.50)
In terms of the components A A2 43 of the vector /u
R may be expressed as a matrix. .
/a,’ (1-cos6)+cas® . /a,/éz (1- case)—ﬁ(asme Ay (1-c056) 42, 5in O
/‘2/‘" (/—‘COSG) 'f'/l,la 3[”6 /a: [/-cose)-!-case ' /42/3("‘036)'/“,54.”6
g phy (1= Co56)—uty $¢n® gy (1-€050)tu,sine i (1-cos8)+cose
: : (2.51)
by using the relations
A1 A1 At phq kg
, | 2
'/“/"'Tz A2 &‘I/“z/“’_s) S| A2 Hr Ha Pt Pk ]
‘ Asply fgps pis
3 : 3/77 k{ 3
z (2.52)

and ‘ . vo 7“3 /"2
/u ® = g o “ Ay
| M, My 9

v . 21 . - -




Note that -
R = RT

since (/u/,‘T)T= /a/u7

Additional properfies which may prove useful are derived below. The trace and
determinant of R are given by . -

tr (R)= |+ 2 cos®

[R]= 1

SA ‘ Py x

- . R %o
and the eigenvalues of R are'/, ¢ "and & .

Note that
upul = (R+RT -2 cosOr1) /2 (1-cos8) (2.53)
T3z = Tz3 L
: / ' . (2.54);
A= 2 sin6 Trs 31 T
21 = 72 o,
where r., are elements of the R matrix

jk

@ = (R-RT)/Z‘sinG
R2 = RT+ tr(R)(R-1) .
' (2.55).

combining the above, the characteristic equation is given by

R>-tr(rR)R*+tr(rR)R-1=0 (2.56)

* . . 2 ' ’
In this equation, ¢ = V-1 to distinguish from i used as index below.

22



The projection operators associated with the eigenvalues are
A
£, = .E;?O = (I-,a,ur- t/aﬂ)/z
E

. A :
Ey = Egro =(I-unu"+ lus)/z |
| (2. 57)
Note that £, +E,+ Ey=1I
and ' EJ: Ep = ‘%’k Ef

where Jfk is the Kronecker delta

2.3.2 Quaternions

In the program, quaternions are used to update the direction
cosine matrices. A more elaborate development of quaternion theory may be
found in Ref. 13 pg.168. The relationship between the rotation operator estab-
lished in Equation (2. 47)and quaternions is presented in this section. A ro-
tation may be expressed in terms of a quaternion

ﬁ, - Z. * ‘ )
| b5 =p°% (2. 58)
= cpe B 8y =
where g = cosY + sznA/
~and ?*= cos9, - sin¥, u
A quaternion may be considered as four component matrix which has a scalar,

a=cos®, as.a first term, plusthe three vector components, & = sin e/Z/ZT
This results in the following: ' ‘

b =(a+2)z(a—2)
T e aln-alisiln-200

(2.59)
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Interpreting the results as

aba=a"b since & is a scalar
sty - :
xbia=al-b-o +bew)
where the product of two vectors has been defined as,

fau=-b-u+bou

Ubu

"
NI A
/\
oy

&
A
f\

Qb
o~}
)}

Combining the above relationships yields

RS — i

-t .
5= (a?-u-u)b+z2ubhu+2a u®b

when

('2,60) o

(2.61)

& = cos 9/2
o u = Sin 9/2 ,Zz
then . : _
??*=(Q+Z)[Q-Z)= aAru-u =1
and = -
b =cos6b +(1— casé);z- bu +siné u®b
%'= Rb ,or b= Rb (see equation 2.47)"
2.3.3 Relation To Direction Cosine Matrix

If the direction cosine matrix D represents the relation

between the vector b'in a reference system and b as measured in a local

system, then

24



b= Db

(2. 62)

and

b= 0

_ ,Previoﬁsly we defined a rotation matrix R as an operator
which, when applied to a vector measured in a particular coordinate system,
would give the components in the,safne coordinate system of a new vector

which was a rotation of the 6rigir;al vector.
. The direction cosine matrix represents the relationship of the
components of the same vector as expressed in two different coordinate sys-

tems, one rotated relative to the other. If the local system is described as

have been rotated an angle © about an axisP from the reference, then
DT=R= ppu’+ cose(I—,u/uT)+sin3 A®  (2,63)

2.3.4 - Time Derivative Relation Between Quaternions and Direction -

Cosine Matrix

'Relationshipsbare established between the time.derivative of the
direction cosine matrix and angular velocity which is then related to the time
derivative of the quaterniom Asg previously established, a rotation of a vector
b to a vector b’ is the following: . '

‘_ b'=D'(t) b at time t.

At a time later z+4 '
. . ) Ca ) : . ‘

Then it is pos'sible"to write

4 | / )
b = R(A) b using the rotation operator.
25




Combining these results in

b = R(A)DT(£)b = DT(t-/-A)b (2.65)
therefore from continuity
D7t +4) = R(4) D(2)
or D(t+a) = D(t) R'(a) | (2.66)
Writing the derivative D(t) as D(t) = f’."; [ D(t+4)- D)
: - A
be)= o(t) (RT(A) 1)]
= _’0
Then
D{t)— [D/f)(#/u"v‘ cos @A) (I-upT)-sin0(a) u® - 1)
S . - (2.67)
Using L'Hospitals rule , _ _
-2 e -de .
7 '(t)D(t) T M@ = -6,u® (2.68)

d4

Interpret 4 as the instantaneous axis of rotation and 9
as the angular time derlvatwe. Thus the vector 6/1 defined in Equation (2.68)
is D 1m, where w is the angular veloc1ty in the local reference system

associated with D. From the matrix identity

(Ab) ® (AC) = det (A) AN b@C |
wehave 0@ @) =0t OO or 0wy @b

-Equation 2.68 may be rewritten as

D lw@p?

o™} 0@ hence ' o .
DT =D u@® . (2.68a)

=]
o
1
n

-DD~
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In quaternion notation, using q instead of R,

D=9 Dog  (2.69)

 where the quaternion is defined to operate on the column vectors of the D
matrix, D, is the initial value of D,

and ?*? =/

g (0)=1

Differentiating equation (2.69) with respect to time, yields

6=?.*Da?+;~po?.'
- ek »
= ? fD + D? f.
= -2 (?*f) ®D
since ?"7’ and - ?*y'.is a jéctor. Thisl.results' the rélationship
| 2 ?*f.z @
g = 9

" or

(2.70)
‘More explicitly, write q as
0 -w, -u, - %0
: @ 0 Wy T 'dl ,
¢ =4 =T
. (2.71)
&)’ é),_ -, o ?3

where UT i((.J, > &, 6dy)
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which has the characteristic equation

(A% + ;’ W)
2 (2.72)
and double roots Ay & 3 ] w |
.. N
and A, = -‘f,_— l w |
Note that 7 =A I. The projections are given by
=1 T
Ex =2 [ ;\,,:[
and
Eaz = I- E/‘r
If T is a constant, equation(2. 7Dhas a solution
g(¢)=e""g )
(2. 73)
where
. o +
=(¢as—§,w,t)l+ M
' 5 el
Therefore it is possible to write, .
‘ sink]wlt
?(f)=(c:os}2|wlt)?(a)+ z’ [ 3(0)
(4]
: (2. 74)
and
T ¢le)=2() (2.75)

In particular, if

?(0)=

Qo0 ™

28



and _
. _ _ 1 “
?(o) = T?(O)— % o
then &y

cos(y [w["t')
sin(y [0]9) 14

?[&)::
SLn(/ ,w’t)lwl
san(/ }a]t),m
. o (2.76)
In quaternion notation, we have
= ! \ ; A
g = cas(/z [o|t) + (sin(ly o] t)) o
which represents a rotation of angle |w|tabout the axis —l
" B
2.4 DETERMINATION OF YAW, PITCH AND ROLL ANGLES OR EULER AlGLES FROM

DIRECTION COSINE MATRIX

'
r

The angular orientation of the segments"in the 3-

D prograrﬁ are

computed and maintained in terms of the direction cosine matrices.

For input and output purposes, .it is convenient  to express the

dlrectlon cosine matrices in terms of three rotation angles, elther yaw,

pitch and roll, or the Euler angles, spin, nutation and precessmn

29




2.4.1 Computation of Yaw, Pitch and Roll

A direction cosine matrix can be comput ed as the product of
three successive rotations about the coordinate axes (see Figure 2,7). This

product can be expressed as D = Tx_(r) TY (p) Tz(y), or in detail

1 0 0 cosp 0  -sinp | cosy siny
D=1}0 cosr sinr 0 1 0 -siny cosy
0 -sinr cosr sinp 0 cosp 0 0
3 2 1

where in the above matrix product

1 - represents a yaw around the z axis, Tz (y)
2 - represents a pitch about the resultant y axis, T-Y (p)

3 - represents a roll about the resultant x axis, Tx r).

' The complete matrix is given below:

cosp cosy cosp siny -sinp

-siny cosr cosy cosr cosp sinr
+sinr sinp cosy, +sinr sinp siny

+siny sinr -sinr cosy cosp cosr| - .
+cosr sinp cosy +cosr sinp siny

We have tr(D) =1 + 2 cos 6, (Section 2.31).

o
]
N

| | 2 2.
(cos y/2 cos p/2 cos r/2 + sin y/2 sin p/2 sin r/2)" = cos e/2

30



'The direction cosine matrix defining the same orientation is:
D=/d{l,} for i and j = 1 to 3

The present routine computes yaw, pitch and roll angles with the relationships

y-zdn é )/a-—.sm/ ) r=fdn?%) (2.»78)V

Application of expressions (2,78) provide excellent results exc.ept
- in regions approachi'ng p:l‘%(Casp»o)' . Additional relationships have been
derived which may alleviate problems in this special region.

Z,,+ ds = cos/y— r) (17 5z'77p/)
-d,, +dy, = S5in (g/—r)/zfsinpj

dyy - dyy = cOs(ypz)(1- siap)

dyy* dyy ==sin (y+z) (I-sinp)

hence if , Sinp=1

cz’
we have y r -ta.n / 277 dsz)
' Q22
S R4
and if mp

yrE = lan /q{‘” ") : /

At these points (when cos p=0, sin pii 1) it is impossible to
distiﬁguish between yaw and roll hence some arbitrary decision must be made

unless further information (such as niemory of last point) is available.

2.4.2 Euler Angles: Spin, Nutation and Precession

In a manner similar to the above the Euler angles may be
obtained from the direction cosine matrix. The conventional notation as used’

in Reference 11 is

D~ TJ(V) Tx(o)'7:;-(¢) s

31
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where ¢ , o and ¢ are termed the spin, nutation and precession angles,
‘respectively. ‘In particular the direction cosine matrix is expanded in the
" following manner and is illustrated in Figure (2.8:)

cos y siny 0 1 0 0 cos ¢ sing
-singy cosy 0 0 cosé sine -sing cos¢
0 0 1 0 -sing cosé 0 0

when multiplied yield.

—

cos cos¢ cos y sing sin sin]
-sin cosé sing¢g +sin¢ cosé@ cos¢ .

D = . . .
-siny cos¢g -siny sing . cosy sine
-cosy cose sing +COS ¢ CcOS O cos¢g
sine sing¢g -sin e cos¢ cos @

As before the Euler é.ngles may be computed by

o= cos'(dss) | w=tan ( Wiaer), ¢= tan’ (P g,)

in almost all cases (i.e., & %¥O , or &% T ).

For the special cases of 8 = 0 or 7 the following relation-
ships may be used. )

6= 0 | o=

» ' ‘ -/ d d.
W+P = tan (———d’z-dz’ ) P-¢ = -60.&1"'(_5_:__2!> :
g, + dzz oy - daz
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Agaiin, for these special cases it is impossible' to distinguish between the
spin and precession. An arbitrary decision could be made such as setting

¥ = (0 and computing ¢ from the above table. 'An alternate solution is to

use additional information such as memory of the last angle values to-alleviate

the problem.

UV EPPE




\  LINE OF NODES

Figure 2.8 EULER ANGLES
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SECTION 3
VECTOR EXPONENTIAL INTEGRATOR

3.1 ~ INTRODUCTION

In largé scale simulations, such as the Calspan Three-Dimensional

Crash Victim Simulation computer program, where the amount of computer time
- can beéome overly excessive to'produce'integration results to a desired degree

. of acéuracy; it becomes very desirable to determine those integration techniques
. that are capable of producing the best integration accuracy for a minimum
expenditure of computer time. Throughout the development of the CVS, Calspan
has been continually investigating different integration techniques to achieve
these goals. |

A new integrator, called the Vector Exponential Integrator, has
been incorporated into CVS-IV that duplicated results obtained with the CVS-III
Aintegrator but required only about 10% of the computer time for a test case
where the CVS-IiI integration control parameters to achieve comparable results
on IBM and CDC computers were determined»by NHTSA personnel. Other studies at
~ Calspan (Sections 3.4 and 3.5) indicate that, for the same amount of computer
time, the accuracy of integration is significantly improved with the new

integrator.

3.2 - MATHEMATICAL FORMULATION OF THE INTEGRATION PROCEDURE

To describe the procedure used by this integrator, consider the first
order differential equation

X = £(x, t) S | (3.1)
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The solution of equation 3.1 may be written as
t

x(t) = x(0) + f oo (t-1) [£(x(1),1)-a(x(1)-x(0))]dt (3.2)

o]

where o is a constant to be determined.

Assume that f may be approximated by

;(t) = f(x(t),t) = ax(t) + a, + alt + a2t2 A (3.3)

and a, are parameters to be determined. We then have

where o, ao, a1 2
, t
x(t) = x(0) + J. e (t-7) [ox(0) +'a0 +agT azrz]dr o ”(3.4j
o . .

or

x(t) = x(0) + (ax(0)+a )t e () + a t%, (t) + a,t%, (1) (3.5)
where

e, () = (e*t-1)/(at) +1 asat >0

el(t) = (eoat-l)/(at) + 1/2 as at >+ 0

e,(t) = (2elat;1)/(at) +1/3 as at > 0

(The presence of the exponential function is the reason for the name

exponential integrator,)

The behavior of the integrator is determined by the method used for
determining the four parameters, o, aO, a1 and a,- In the latest version, the
integrator operates in two modes, a reset mode and a memory mode. In both

modes the parameters are selected to fit the computed derivatives at t = 0,

36



the beginning of an integration interval, Hence we may rewrite equation 3.3

as

. o ’ . )

X(t) = a(x(t) - x(0)) + xX(0) + at + a2t2 (3.6)

In the memory mode, when a successful integration step has been
completed over a time interval h, t + h is substituted for t, so that t = 0
" is always the start of a new time interval. This yields
2

a(x(t+h) - x(W) + (a + 2a)h)t + at (3.7)

x(t+h)

*

a(x(h) - x(0)) + x(0) + ah + azhz

The functions are then redefined so that the form of equation 3.6 is preserved,

where

new a1 = a1 + 2a2h'
‘new a, = a,
Aﬁew x(0) = old x(h) is used in place of a(x(h)-x(O))+;c(0)+alh+a2h2

"new. x(t) = old x(t+h)
, _ -These values are used to estimate the value of x(t) at the first half
: step of the next ‘interval, i.e., when t = h/2, In the reset mode, the parameters

o, al and a, are set to zero.
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3.2.1

Computational Procedure

The integrator uses a procedure similar to that used by a basic

Runge-Kutta with the steps as follows:

Step 1:

Step 2:

First midpoint calculation at t = h/2.

a)

b)

c)

d)

e)

x(h/2) is evaluated using equation 3.5.

L]

x(h/2) is evaluated by calling Subroutine PDAUX.
The parameter o is unchanged,

In the memory mode, the parameters a1 and a2 are'modifiéd so

that the fit for the derivative is exact at t = 0 and is least
squares fitted to the values of the derivative at the beginning
and middle of the previous interval and to the value just

determined.

In the reset mode, a

is set to give a linear fit to x(0) and
x(h/2) with o = '

1
a2 = 0.

Second mid-point calculation at t = h/2,

a)

b)

c)

d)

x(h/2) is evaluated using equation 3.5.
x(h/2) is evaluated by a call to Subroutine PDAUX.
The parameter a iS'updated.‘

In the memory mode, parameters a; and a, are computed to fit
the values of the derivatives at t = 0, t = previous mid-point
and the average value of the derivatives obtained in this and

the previous step.
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Step 3:

Step 4:

e)

In the reset mode, the parameter, al; is set to give a linear

fit to the value at t.= 0 and the average value at t = h/2. -

First end point calculation at t = h,

a)

b)

c)

d)

x(h) is evaluated using equation 3.5.

x(h) is evaluated by a call to Subroutine PDAUX.

The parameter o is unchanged.

In both modes, the parameters'é1 and a, are computed to fit

the value at t = 0, the average at t = h/2 and the value at
t = h just computed,

Second end point calculation at t = h,

a)

b)

,c)

d)

e)

x(h) is evaluated using equation ‘3.5,

. . ’
x(h) is evaluated by a call to Subroutine PDAUX.
The parameter a is updated.

In both modes, the parameters a, and a, are evaluated as they

were in Step 3d.

Tests for convergence (to be described later) are performed.

If the convergence test passes, the integrator has successfully

completed a step and we proceed to the substitution t <« t + h
as explained previously. If the integrator has successfully
completed three consecutive steps for the same value of h, the

Control is then returned to Step 1.
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 value of h is doubled but is limited to the input parameter hma .
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£f) If the convergence test has failed and if the specified
‘number of iterations of Steps 4 and 5 have not been made
(as controlled by the input parameter NDINT), control is
then passed to Step 5.

g) If the convergence test has failed and the specified (NDINT) number
of iterationé haveAbeen made, the step size h is halved and the
process is repeated by returning to Step 1. However, if h is
already less than the allowed minimum Step size (as controlled
by the input parameter hmin)’ the integration test is considered
successful and the t « t' + h substitution is made and control is

passed to Step 1,
Step 5: ‘Additional calculation at mid-point, t = h/2.
a) x(h/2) is evaluated using equation 3.5.
[ ]
b) x(h/2) is evaluated by a call to Subroutine PDAUX,
c) The parameter o is updated. .

d) In both modes, the parameters a, and a, are evaluated to fit
exactly at t = 0, the last value at t = h and the new value

at t = h/2 just computed.

Step 4 is then repeated éxcept that the value just computed at
t = h/2 is used for ;(h/Z). Where the standard Runge-Kutta method evaluates
functions only at t = 0 (or end of previous step), t = h/2, t = h/2 and t = h,
the new integrator now tests for convergence, and revaluates t = h/2 and t = h
for NDINT iterations if the convergence test fails. However, the convergence
test may pass at any t = h evaluation. Although it seems that increasing
NDINT may cause extra functional evaluations and hence expend additional
computer time, if the extra functional evaluation can reduce the error and

cause the convergence test to now'pass, this may prove to be more efficient
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than the additional functional evaluations made necessary by halving the step

size. The sequence of functional evaluations is summarized in Table 3.1.

The integrator treats each variable separately by the preceeding
process. There.are two exceptions to this, one is the determination of the
value of o and the other is the translation of t in the parameters associated

with the quaternions.,

3.2.2 Determination of the Value of o

_ The variables are;tréated in their three component vector form
X and X, the same value of a is used for each of the three components of the
vector, but a different o is evaluated for each vector. This is the reason

for the name Vector Exponential Integrator.
Let

T(t) = o (X(t) - X(0)) + X(0) + th' . '521:2 ' ' (3.8)

be the vector form of equatioh 3.5.‘.If two different determinations of x(t)

and X(t) are made at the same time point t, we have’

T = o &0 - ®(0) + K(0) + 7yt + Tyt?
;2(1:) =0 (Eé(t) - E(Q)) + X(0) + a3t + ;2t2
Subtraction yields
X, (t) - ;'c“l(f) =a (x,(t) - X (t)) : - (3.9)
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Table 3.1 SUMMARY OF INTEGRATION STEPS

Time Point Used to

sg?P ;;E;E Compute a, and a,
1 t = h/2 t = 0, least square fit
thru t = —hs, —hs/z, h/2
2 t = h/2 t = —hS/Z; 0, h/2
3 t=h t =0, h/2, h
4 t=nh t =0, h/2, h
5 t = h/2 t =0, h/2, h
h = current step size
hS = previous step size

Sequence of steps: 1, 2, 3, 4(1), 5, 4(2), 5, ~~--, 4 (NDINT)

Exponential
Factor

same o

new o

same o
new o

new o

Time Point
Data Saved

middle point, h/2

average of middle
points

end point, h
end point, h

middle point, h/2



If this process is done at several time points, we may make a ieast

square determination of a by

- Lok, () - X (g )Xyt ) - % (t)) i % (3.10)
zIx,(t) - §1(tn)|2 ’

n

The values of the numerator and denominator are carried separately as U and V
so that they may be updated when new data points are obtained, In the memory
mode, when t is translated by t = t + h, U and V are decreased by a memory
factor which depends exponentially on the value of the step size h just

completed. In the reset mode, both U and V are initialized to zero.

3.2.3 Integrator Convergence Tests

The Vector Exponent1a1 Integrator obtains two sets of derivatives
in vector form. One set, considered to be the computed value and denoted by
§;(t), is obtained by a call to Subroutine PDAUX. The other, considered to
be the estiméted_value,and denoted by ?e(t), is evaluated from the functional
form of equatidﬁ 3.8 using the latest values of the parameters (repeated for
convenience). ' ' '

T(6) = aX(t) - X(0)) + X(0) + 7+ Zztz ' (3.11)

If a is large, this estlmated value is very sen51t1ve to perturbations

of x(t). Con51der the error measure e defined by

(3.12)

. _ _ 2
X (t) + of - %_(t) 2
. '82 - I e _ ¢ X l Y _1§1____
R HOIK
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where

o
"

perturbation of Ett)

>
!}

arbitrary constant weight (present version assumes A = 1)

Equation 3.12 is minimized when
@ (X, - X))

5 = c e

o? T Y IX

(3.13)
|2

and has the value

4

-7 0 S

€ min ° (3.14)
-2 2,=2

|xc| + a”|x| /A

Note that when aZ/A = 0, this reduces to a relative squared error of the

derivative as was tested in the previous integrator in CVS-III.

For each vector variable which is integrated, the user supplies three
levels of test numbers (Tl’ Tz,and T3) that are used by the Vector Exponential
Integrator to test for integrator convergence,

The procedure to test for integrator convergence is as follows:

a. If the magnitude test»T1 is zero, nb_further testing is

performed and the test is considered passed for this vector

variable.

b. If T, #0and if~|§;|2 S_le, no further testing is performed

and the test is considered passed for this vector variable.
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2
2 b4
+ . no further testing is performed for thls vector varlable and

c. If the absolute error test T # 0 and Ix 3 |
the test is con51dered to have passed

2 2 . ’
d. If ¢ min > T3 , the relative error test parameter, the
integrator convergence test has failed; otherwise this vector
variable has passed and the procedure is then repeated for all

vector variables.

It should be noted that for an integration step to be considered as
successful, all vector variables must pass the above sequence of tests;
whereas any single vector variable failing Step d will cause the integration.

step to fail,.

3.3 ANALYTICAL SOLUTION OF FREE BODY ANGULAR MOTION

The angular momentum vector in inertial reference of a single segment

is given by the matrix relation

h = D! e T (3.15)

where

D is the direction cosine matrix
¢ is the inertia matrix (tensor), and
w is a vector representing the angﬁlar velocity

about the principal ‘axes in local reference.
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If the
constant and the

of equation 3.15.

Equation 3.16 can

It can

segment has no external torques acting on it, then h is a

equation of motion is obtained by taking the time derivative

o) =0t ow+ D7l w® tw = - (3.16)

be solved for the angular acceleration vector
-1 B
w =-¢"" 0w dw : (3.17)

be shown that

w e %w=0 (3.18)
hence

w e+ ®w = 2E ' ' (3.19)
which is a constant where E is the energy. Also,

(¢w) ¢ (®w) = heh is constant (3.20)

If & is a diagonal matrix, equation 3.17may be written as
w, = “2“3/a (3.2;)
L)
S w, = wswl/a

g = wwy/ag
where a, = ¢o,/(e, - ?.)

3 = 8/(%5 - 2))
and ag = 0./(8; - )
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The following cases may then be considered:

Case I: The segment has equal principal moments of inertia, i.e.,

1 %27 %3

[ ]
In this case, equation 3.17 becomesw = 0, hence, w is a constant.

The instantaneous angular position is described by the quaternion, q, where
. wit :
sin .l—J—— . (3.22)

vand the direction cosine matrix by

D= (cos |w|t) T + (1 - cos |w|t) %gi-— (sin |w|t) ?g%— (3.23)

Case II: The segment has two equal principal moments of inertia, i.e.,

o, =0, # 0.
- . . . .
In this case, since Wy = 0, Wy in equation 3,21 may be differentiated
to yield ' '
= w2w3/a1 = mlws/giaz (3.24)
The solution is
W, w
2.3 .
- "0 "o sin {t
W, = wy cos ft + 2 5
_ o
w, W
= : 0 "5 sin Qt :
w, = w, cOS Qt -+ 7, a - (3.25)
o .
m3=m3
, o
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where Q =

= - |w30(¢3 - ¢)/% | (3.26)

(1)

In terms of the Euler angles
spin), if we let

» ¢, ©, ¢y (precession, nutation and

sin ¢ sin ©

¢/ |0l

szz/lhl = COS ll) sin © (3.27)

and ¢3w3/|h| = cos ©

the momentum vector, h, will be aligned with the inertial z axis; the nutation

angle, 0, will be constant; and the spin angle, ¢, may be computed directly as

-1 ’ ’ v
p = tan Z)_ . (3.28)

The precession angle, ¢, is determined by the relation

¢ sin @ = w, sin'y + w, cos Y = lbl-sin 8 (3.29)
1 2 @1

Therefore,

¢ = |hl/¢1 ' (3.30)

is a constant, and

$ = ¢+ (lhl/él)t , (3.31)

(1) See Section 2.4.
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Case III1: The principal moments of inertia are all unequal.

It is no restriction to assume that ¢1 < ¢é < ¢3. Equation3.21 may

-then be written as
< ,
. L] [ ) [ 2
a = = = .
19191 T B0yt = B3zt T wyuyug . (3.32)

FIntegrating equation 3.32 yields‘

- 2 2 2 2 : '
Ry 9y ) = 23, "2, ) = as(u, "u3_ ) (3.33)

0, and wg may be expressed as functions of w, and substitution then yields

IS _ _ 2 2 2 2_ 2 2 1/2
gy = {[-2,(0, -0, )-aju) "1[-a,(w, -w, “)-aguy “1/aja.} - (3.34)
_ ¢ ‘o o “o o - .
. If we let
e e s 2 zé_ 2 2) .
min = minimum (azw2 -3,0; 5 3wy -agug : (3.35)
: ) ) o ) :
o o 2aw 2 aw 2aw dy '
max = maximum (a2w2 a0 o, 3pu, Y3 : (3.36)
o o o 0o
w, =¥ I min/a2
and m = min/max

then equation 3.34 may be written as

. [max .q (1-y3) (A-my?) ’ (3.37)
L ICTC . o .

e




Now by defining

dy
A -y (1-my?)

as an Elliptic Integral of the First Kind, and

y = sn(u)

(2)

as the corresponding Jacobian Elliptic Function ", one obtains

a

min . max -1 2
w, = —— sn ([t-t ] J=——+ sn " [o —_— 1)
2 a, o alaZa3 20 min
Furth if min = a 2 a
urther, if min = aju, = - 3,0, , then
o o
" 2 = - min ) an(u)
1 a .
1
2 max 2
wgo= - (7 dn” (u)
3
(£ min o N
or, if min = a,w, - 20 then
o “o
2 max 2
w,oo= - (=) dn (v
1
2 min 2
w,” = - (F—=)en (U

(2) Reference 10.
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where u is the argument of the sn function used for mzvin equation 3.40. Care

must be taken in selecting the signs of the square roots which must be chosen
[ ]

to yield the proper signs for w and w. Also note that

() + en’(w) =1 o Gas

t
—

dnz(u) + m snz(u) =

The angular position may be determined in a manner similar to

equatioh 3.27, namely

(3.45)

¢3m3/|h| = cos O
1% = tany
)
and equation 3.30 becomes
2 2 - -
. X
= |n| [ 2L . S50 (3.46)
. 1 2 o
2 2
- In| 0w+ 9w ,
= 0 20 2 0 22
1% 7 %2

. . _
Note that in the general case, © and ¢ are not constant as they were when
?1 = ¢21

Further substitution into equation 3.46 yields

(0,-0,) + (0,-9)) k sn’ (u)

-9

- 7
[n| 2 (8578)) + 05(8,-0,) k sn’(w)

¢1"1 - @S'l
- -1, 3.47
[n] o, + 1, nk}snz(u) 1 ( )
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where

L ¢z (2,-9))
2, (95-2,)
d k = 1 if min = 2 _ 4
an . = 1 min = a2w2 - l(.l)l
[o] [o]
e 2 2
= m if min = azmz - a3w3
(o] (o]

This is now in a form that can be expressed in terms of Elliptic Integralé
of the Third Kind which are defined as

u

m{(n; u|m) = J. [T - n snz(m)]_1 dw (3.48)

(o)

The solution of equation 3.47 may be written as

t-t
o =¢+ |h| =2 +C [n(nk; ulm) - w(nk; u_|m)] (3.49)
(o} @s 0 _
where
¢ = In| ot - et 41%2%3
- ( 1 T *3 ) max
- snl ¢ )
u = sn W, a2/m1n
u = sa} (w a_/min )
o 2 ,/min
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. 3.4 SIMULATION OF FREE BODY ANGULAR MOTION

Users of CVS-III have experienced difficulty in those cases that

_involve rapid angular motion of individual body segments, Examples of this

are (1) the basic test case Calspan has supplied on previous program tapes when

the feet make initial contacts with the floorboard and toeboard, and (2) pedestrian
runs by Chrysler Corporation for the RSV program when the hands make initial -
contact with the hood. In both cases, these were small body extremities making
hard contacts near the beginning of the simuiation. Attempts to control the
resulting rapid angular‘motion by'vafying the input of the integrator control
parameters forced the integrator to the specified minimum time step intervals,

resulting in excessive computer CPU time, and produced questionable results.

It became suspect that the integrating techniques used by CVS-III
were either incorrect or incapable of properly integrating angular motion.
It was decided to run computer simulations of a single rotating segment for
‘a case where the exact analytical soluﬁion is known to study the accuracy of
the integrétion of angular motion produced by the new integrator. The

analytical solution of free body angular motion is given in Section 3.3.

3.4,1 Computer Simulatioﬁ Inputs:

The basic inputs for the test case were given‘by:
(1) One segment and zero joints (Card B.1)..

(2) Principal moments of inertia (Card B.2),
@x, @Y and ¢z (or ¢ @2 and ¢3)'= 1, 2 and 3.

1’




(3) The input yaw, pitch and roll (Card G.3),

y = tan”] f—l = 116.565051 deg.

p = sin”! ,|5/14 = 36.6992252 deg.

L2}
H

0 deg.
These were chosen so that the momentum vector would coincide with
the Z axis. Note that CVS program normally computes the initial direction

cosine matrix by reversing the order of the input rotation angles (yaw, pitch,
and roll), i.e.,

(4) The initial angular velocities (Card G.3),
. wy and w, (or W, W, and NS) = 36799.3780 deg/sec.
These were chosen such that the frequency of the components of angular

velocity would be 100 cycles per second, the period of one cycle to be exactly

10 msec. This value is obtained in radians/sec by

w = 200 ,|3 X (m)

where K (m) is the complete elliptic integral of the first kind for m = 1/2.

(5) Theré are no specified contacts and the segment is falling

under the influence of g (Card A.3).
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3.4.2 Additional Simulation Outputs

In addition the output routine was modified to give‘the following

outputs for every successful integration step.

(1) The segment angular velocity was changed from rev/sec‘in

vehicle reference to rad/sec in  local reference.

(2) The components and magnitude of the momentum vector, h,

given by
(dw) - (¢w) = h*h

This should remain constant, with the x and y components equal

to zero.
(3) The constant ,IZE , where E is the eneigy, given by
w* (Pw) = 2E

€)] ‘In addition to the angular diéplacements, y, p and T,

computed from

the Euler angles, ¢, © and ¢, were printed in .degrees from

D =T, T () T,(4) | ~
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(s) The following angles, in degrees, are computed as follows

and theoretically should equal the indicated rotation

angles.

P* = Sin_l :?Lul)_l_ ~ p
h
L3N

r* = tan" ! @2 2 . g
3“3
o w

0% = cos T%Té = 0
b w

o = tan"] Ql L oL,
2%2

In addition, the other two rotation angles, y and y, can be compared
to Jacobian elliptic functions, sn(u), cn(u) and dn(u), but these comparisons

were not made.

3.4.3 Comparison Measures

The resulting time history outputs presented many items whose
accuracy could be determined to study the accuracy of the integrating techniques

used. They include:

€3] The x, y and z components of linear acceleration of the
segment c.g. should be in the ratio of 1:2:3 at the half-
period (every 5 msec) time points. The resultant should

remain at a constant 1 g for all points.

(2) The z component of linear acceleration at the points (1, 2, 3)
and (0, 0, 1) appeared to remain constant with small
fluctuations. Also, the resultant linear velocity of the

point (0, 0, 1) appeared to remain constant with small
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fluctuations. These results were unexpected and have not

been studied.

(3). The components of segment angular acceleration (rev/secz)’in
local reference should follow known elliptic functions with a
fixed half-period. (5 msec). Their magnitudes are quite large, ,
~ 106, and the deviation from the known values 'ét the
half-period time points was one of the measures used to

study the accuracy of .the various simulations that were run.

4 The magnitude of the x and y components of the momentum
vector h should be zero, and the deviation from zero is

a meaningful comparison measure.

(5) The values of |h| and E should remain constant and their
deviation from the known constant value can be used as

comparison measures,

(6) The deviations of the computed values of p*, r*, O*,'and
¢* from the printed values of p, r, © and ¢'at the same
time pointé are élso useful comparison measures. It was

-difficult to determihe, however, if deviations were caused
by inaccuracies in the direction cosine matrix or in the

angular velocities.
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3.4.4 Simulation Input Parameters

Several simulations were run for 25 msec, 2 1/2 full cycles,

varying the following parameters.

(1)

(2)

3

(4)

Integrating procedure used.

a, New Vector Exponential Integrator,
b. Previous integrator of CVS-III.

¢, Standard Runge-Kutta integrator,.

Value of the maximum step size, hmax'

Value of the initial step size, ho.

Value of the relative error test for angular acceleration. .

A summary of the various simulations is presented in Table 3.2.

3.5  RESULTS AND CONCLUSIONS

A study of Table 3.2 and the finer detail given by the simulation

outputs show the following results and conclusions.

(1)

The new Vector Exponential Integrator produces very accurate
results of free body angular motion., The resulting accuracy

is 50-1000 times better than that produced by the previous
integrator of CVS-III, using the same integrator control
parameters and approximately the same amount of computef

CPU time (as measured by the number of calls to DAUX). In
order to produce the same degree of accuracy.with the CVS-III
integrator, it would be necessary to tighten the relative error

controls which would increase the amount of computer CPU time.
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. cates muemmas et ———————t

6S

Run Number

8045

6688

4393
1176
5816
4376
6793
3717
6190
6502

Integrator

Vec.
Vec,
Vec,

Vec,

Vec,

Vec.
Vec.
Vec.

CVS-IIT
 R-K

FExﬁ,

Exp. .

Exp.
Exp.
Exp.
Exp.
Exp.
Exp.

No. Steps

N N 1 N
v o © wn

. Table 3.2

~ DT (Msec)

=
~
N

2 Y I L A

(Msec)

h
max

1/2

1/2
1/4.

1/4
1/2
1/2
1/2

1/2
1/2

1/2

(Msec)

h

1/8
1/2
1/16
1/8
1/16
1/16
1/8
1/4
1/2
1/2

Relative Error Test.
For Angular Accel,

. Integration Steps

No

Calls to DAUX

No.

317
204
417
411
259
259
251
239
235
363

Max. Error (%)

ngular Acceleration
t Half-Period Points

A
A

11.6300
0.2138

0.0323 -

0.0416
0.0159
0.0248
0.0259
0.0979
0.0414
0.0078

Max.Magnitude of X, Y

Components of

- -SUMMARY OF COMPUTER SIMULATiONS OF FREE BODY ANGULAR MOTION

Momentum Vector, h =~

~
(]
N
(=]

(=]
0
<))

10.99
10.89
10.99
10.95

9.78
8.04

0.79

©O © © ©o © © © © © & Max, Deviation (%)

of |h| From Con

Value

stant

.3570
.0286
.0021
.0046
.0079
.0092
.0099
.0137
.0129
.0008

Max. Deviation (%)
of E from Constant

Value

N
O
[+]
s
o

0.0224
0.0025
0.0051
0.0108
0.0108
0.0114
0.0146
0.0178
0.0006



(2)

(3)

(4)

The variation of the input parameters, hmax and ho’ had
small but inconclusive effects on the resulting accuracy with
the new integrator. In some cases a maximum step size of

1/2 msec produced better results than those of 1/4 msec.

The most significant increase in simulation accuracy was

achieved by decrea51ng the relative error test for angular
-4

acceleration from 10 and 10 . The resulting accuracy

increased by factors of 6-30, using thellargest values of hmax
and h tested, but required a 54% increase in computer CPU
time, It is believed that a further tlghtenlng of this input
parameter would improve the accuracy even further, as long

as the relative error can decrease rapidly to this test
parameter for the NDINT (ipput number of maximum internal
steps for each integration step) iterations. This appears to
be true in our one segment simulation, but is not always true
in a full scale simulation, If the relative error test is not
satisfied after NDINT internal steps, the integratorvfails

for that time step, and the current integration time step is
halved to try again. There were no such integrator failures.

in all of these simulations for the one segment model.

A more detailed study of the individual simulations indicated
that there are two sources of error in the integration results.

They are:

(a) A transient error seems to exist at the very first.
integration step. The new Vector Exponential Integrator
has a built-in memory to integrate to the mid-point of

" the ‘next step, but this is zero at the start. This
transient error may also be influenced by the accuracy
of the input numbers, the inputs to the one segment model
were supplied with nine significant figures. The error

should be minimized by starting out with a small ho.
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(5)

©

. (b) A cumulative error buildup dépendent on the number of

integration steps. The individual errors are controlled
by the relative error test. If a particular variable
remains fairly constant, the éumulative error is limited
by the number of integration steps times the relative

error test times the magnitude of the variable.

In the individual simulations, some of the actual errors

followed a definite quadratic function behavior after

5 msec, but not between 0 and 5 msec. It is believed that
4, this was due to extra integration steps that are performed

when ho < hmax’.WhiCh in some cases more than offsets

the improvement in the transient error that exists at the

beginning by taking a small ho.

Differences between simulation results obtained previously with
the CVS-III and the new Vector Exponential Integrator are
probably due to loose tests on the relative error for angular
acceleration and the new Vector Exponential Integrator probably

yields much more accurate results,

It must be realized that the angular velocities for the
simulations listed in Table 3.2 are much larger than those one

- would normally expect.in a full scale.simulation. Also, the

2 1/2 complete revolutions of a single segment, achieved here

in 25 msec, is much larger than the rotations usually occurring

in full scale simulations. We therefore do not think that a

. -4 . / ‘s
relative error test of 10 = is necessary under normal conditions.
The following integrator control parameters are recommended as

a result of these and other studies.
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NDINT: 6

NSTEPS: - As necessary to control length of simulation.
DT: An integral multiple of h | .
max
hO: 1/8 or 1/16 msec,
hooxt - 1/2 or 1 msec but a Power of 2 multiple of ho'
h . @ Equal to h .
min o
Relative
Error -2
Test: 10 © for angular acceleration (all segments),

10_3 for linear accelerations (reference segments

only).
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SECTION 4
EQUATIONS OF MOTION OF A SET OF CONNECTED RIGID BODIES

4.1 SEGMENT MOTION EQUATIONS

This section presents the equations of motion of a set of rigid bodies

using matrix notation which has a direct relation to the actual program code.

In this analysis each of the segments is assumed to be a rigid body
connected to another segment by means of a joint. As indicated in Figure 4.1
only one joint is assumed present between any two segments. It is possible now
to disconnect these segments into free bodies by supplying (for each segment
in the appropriate direction) the forces and torques that exist at the joint.

A diagram of this step is presented in Figure 4.2. In this form the equations
of motion may be written separately and simply for each rigid body with a coxr-
responding set of constraint equatlons which allow the computation of the forces
and torques of constraint. By this method extension of the equations to any .

number of segments linked in this way is a simple matter

Define the location of the center of grav1ty (c.g.) of the'nth segment
in an 1nert1a1 reference system by x,, denoting.

X

o
Xp =1 Yo where )g ,%,Z, ~are orthogonal:
Zo/n
coordinates in the inertial reference system.
. [
Define a principal axis system fixed in the segment by [ J.
: : Co : Ak in

Then denote ZZ,va5~the direction cosine matrix associated with segment 7 .
X
Such that if(zy locates a point in the local system, and({) locates the same

point in the inertial system then J),, satisfies the following relationship:
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Figure 4.1 SYSTEM OF CONNECTED RIGID BODIES
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b =D,y |- X, (4.1)
c z '
or equivalently
a (xr =X ‘
b | =Dy, |(y— Y : : (4.2)
< (z —z)]

Define also the £ th external force acting on the nth segment by /. .
The point of application as indicated in Figure 4.2 isP,,k measured in the 7%

local system.

Let f;,J be the constraint force at joint j acting on segment » . This
of course assumes the segment #» is connected to-another segment by joint j
Due to the nature of the free body configuration assumed, if segment » is con-
nected to segment m by joint j then f,,J acts on segment /» and —f,.,J v=fmJ. acts on
segment /7 . )

The position of the c.g. of the nth segment is X, and the velocity
of the c.g. is then )Zn . Denote the mass of the nth seginent to be M, then
the linear momentum is M, X n + The dynamic equation of motion for the nth
segment is then

d ;. .
— (M X, |=2E +Xf
dz‘( ) =2 % i (4.3)

where f4=71,2 ...., total number of external forces acting on segment 7’ and j=h2;"

the joints connected to segment n.

Since the mass of each segment is constant with respect to time, this

equation may be rewritten as

My Xy =2 F, + 2,

' 4.4
This is the linear (translational) dynamic equation. (4.4)
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For develqpment of the angular equation denote W, as the angular

' velocity vector of segment» and @, as the inertia matrix about the c.g. of
segment 2 . The angular momentum of segment A about the c. g. is written as
Pn W, . Note that ¢;z w, -is in local reference so care must be used when
taking the derivative. With this in mind, the angular dynamic équation in

inertial system components is:

(B ) B E s @)

Now taking the derivative yields
) - L : l_ - ~ =7 ‘ - -7 ]
: ’pn Jr¢zz “n +D, l¢n o, #20,°4, 0 =12, 2 Jorgues.
the vthaf, _cbn is'a constant property of the segment therefbre $n = 0.

Also note that ﬁ;x--p,izﬂ'n .D;: and .D'n D:=—wn ® , which is a matrix defined

by equation (2.68.) The angular dynamic equation may be written as
4 -7 . -z, }
P2 (0, 0) vy + 5,70 u =27 2 Torques (4.6)

Ndw the torques may be catalogued‘as follows:

DS Torques = Z(D: j’,,k)? /;'k ~due to external forces

‘due to forces of constraint

-z o
+Z(D7? r@)® f;?‘j at joint

2 Trroms. © due to constraint torques
* 2, Ty . due to external torques

Rewriting eqhation (4.6) yields

b by Lo @80y 20, [E07 2,5 205N,
#2 # 2 fo:l

Cons

. | - (4.7)
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4.2 CONNECTIVITY

The connectivity of the model is described by a joint vector (array)
JNT(j) which is interpreted as joint j connects segment JNT(j) to segment j+l.
The use of this joint array limits the model to a '"tree .structure', Figure 4.3.
That is, noclosed paths can be found which leave a segment via a joint and
return to the same segment through another joint. This also requires that a
" numbering system be used in which joint j is associated with segment j+1.

This imposes no constraint on the tree structure.

The program is so written that JNT(j) may be zero, defining a null
joint. This results in the capability of.defining sets of disjoint segments.
Segment 1 is always taken as a reference segment. "For each joint j where
JNT(j)¥O segment j+1 is the feference segment. For each such set of'segments
the identif&ing nuﬁbers must be sequential. The lowest numbered éegﬁent in each

set is used as the reference. An example of this is the following:

1,2,3 4) (5,6,7,8,9,10,11,12,13)
where JNT(3) and JNT(4) are zero. Thus segments 1,2,3 would be treated as one
set of connected rigid bodies with segment 1 as a reference. Segment 4 would
be an isolated segment with 4 as a reference. Segments 5 through 13 would be

-treated as. a connected set with segment 5 as a reference.
The integrator integrates for the linear motion of the reference seg-

- ments only. The linear position and velocities of the other segments are de-

termined by use of a chain algorithm (subroutine CHAIN.)
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Figure 4.3 EXAMPLE TREE STRUCTURE FOR FIFTEEN SEGMENT MAN
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4.3 CONSTRAINT EQUATIONS

Derivation of the additional equations required for solution
of the systerm equations is presente.d in this section. The first two are
constraints at the joints and arise froﬁl model considerations. For instance,
at a joint the segments mus:t have a point in common (linear position con-
straint) also the type of joints specified such as free, pinned, or locked
require constraint equafions (joint angular position constraint). The third
equation pertains to othef more general types of constraints such as a fixed
distance between points on segments, or sliding or rolling motion of one

segment over another segment or over a vehicle surface.

The general procedure for applying a constraint between
segments m and n is to introduce a constraint force g into the system of

equations as:
Mm )?m—§f”2j +P7=a‘m
Mﬂ )a‘!—%fnk— Py =azn
P d’m’%@; rmJ)Q fmj 7"(4{‘ rm)‘& D, Pgéuzm
2 ‘:’n—%@;Jrn/()w /;4; (4, #3, )@ Dy /,Dsl" %n (4.8)
where the matrix™ P depends on the type of constraint and q is determined

by adding a constraint equation to the system of equations. The constraint

equations are derived in following sections.

*Note: In all cases P may be taken as the identit'}r matrix or it may
be chosen to impose symmetry of the equations where this is possible.
These equations, along with the constraint equations, are referred to as the

system equations.

70



4.3.1 : Linear Position Constraint

Consider the joint j connecting segment n=JNT(j) to segment
m=j+l. Because it is assumed that the joint ‘does not separate, the following

expression

= -.Z
X "-D ) X777+'D777 my (4.9)

- holds for each joint. These equa.tions can be used to calculate Xn  the
positionb of segment n, if J»,Jm and X,, are known. Differentiating equa-

-tion (4.9) results in

y -L Uy -1

Xot Dy /wng)x;u )= Xt Dy (o @1, )
(4.10)

noting that Taj and % y are constant in their local reference system. Differ-

entiating equation (4 10) results in

-z o . - z[ . |
Ko O; [ @r 3 +,“’n°(“‘r;°13y./]il=)(m*'pmz[“’m@r "*“’rn@ﬂ"m@rﬁj}] (a1

which relates the accelerations. Rearrangmg yields.
.z
KRB (i ® w,,)fp (g @ 5 252 [0,98 (0@ % )] <7 [2,000,0%,]
_ : : (4.12)

Equé.tidn (4. 12.) is the linear joint position constraint

equation

4.3.2  Angular Joint Constraint

Again consider joint j connecting ségments n=JNT(j) and
m=jtl. The free body method of describing the motion of connected rigid
bodies require specification of the constraint torque at the joint. The
particular equation defining this torque depends on the type of joint con- ’

sidered.
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Consider the following two cases:. .

CASE 1 Locked Joint

The relative angular position remains constant thus

the direction cosine matrices satisfy the equation

- -z
«C"‘Dm])n (4.13)

where C is a co‘n'sf,a.nt matrix.
Rearranging _ﬂ?‘; C= D;zz
Differéntiating; ) 27;{ /w ” @} C’%D,;lfw 2 ®)
"eliminating C yields Dn;l /“’m ®) .Dm_=_Dn'1[wn ®).Dn '
which implies o
_Dm‘l w ;D;}ww '~ as the velocity constraint.l

Differentiating and rearranging yields the acceleration constraint'as:

D% iy, =D7h =0 o (4.14)

CASE 2 Pinned Joint

The segments are constrained to rotate about some
pin axis which is fixed relative to each segment. Let bm)/kz be unit vectors
defining the pin axis in'their respective coordinate systems. Then the

position constraint is

- = D;Ih = ' C
O B n=h (4.15)
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where-/ym and /i, are constant and h is the pin axis

in inertial reference.

Differertiating yields the velocity constraint

D7 (0,8)h=D3 (v, 8 ),

_or

-Dz;z(“’ % @/’n) =~Dz;; (‘” 2 ‘gﬁm)

(Note: when the matrixw ® operates on a vector, it is equivalent to the
vector cross product 7e (w @)/=w®h.) This velocity constraint may be
interpreted as specifying that the components of angular velocity perpen-

dicular to the pin must be -equal. That is
D?Z-I/m b /77&0712 - mn)) = Dz;f (mm_/’???«(h"i - w m))
(T-hh.) DFw, = (Fhh) D w 4

or

(Note: "h is a column vector, h+ is h transpose [a row vector], hh- is a

square matrix. )

Differentiating again yields the acceleration constraint |
< . -7 Z . ‘A - :
ﬂnjmn @I+ D) w,® (wngbzz) =7 ;wm®/im7‘_zgnz.9)m @(wmQ/)m)
which may be written as v
-7 . -7 . -7 - . -j_ . '
4e [ﬁn “’n’-pm w ='Dzz w n@{anﬁn)—ﬂm Wy @(wm @/7722)
Taking the dot product with h yields :
= ~ £
O-A'Ep?llwn @/wn@én/—pm (08 o wﬁmm}]

= /wn'bn)&wn' mn‘/“"m'ﬁm)?" Yot Yo
which may be written as - :
(”'77'‘“"-n"ﬂ"zz‘bzzjjé © o ‘*’m_/‘*?m'/’m)?' )

This is satisfied if the velocity constraint is satisfied.

Taking the cross product with h yields

. -z . - 4 -z
/@ [ﬁ@(pn Wy Ly Y2 J= Wy lop D700 @ =0 g Vg Dy, 0, @ /iy

which may be written as :

/[—/7/7') /Dn-j ‘“;n_pmdu.’m/ =Y Iy -Dz;z 0 ® = W iy Dr;f Y0 @
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(Note: that we have used the matrix identity 7/-//.=—/® Ah®  which is valid
when h is a unit vector.) In addition, we must impose the condition that the
constraining torque have no cofnponent on the pin axis, that is.

H-t=0
This may be put in matrix form as 5 hH-1=0 and added to the above con-
straint on accelerations to produce a single constraint equation for a pinned
joint as

(Ihh) (D5 6D G ) # Abhet=(( P ® g oy ) D 05, 0

(4.16)

where A. is an arbitrary scalar (2.9‘-'0)

We note that since [_Z' /)/7) t=¢ ~ the original system equations
may be written as o . '

Pn Wy *Q/I-/?/»}haz
( / o (4.17)

This form has the advantage of making the system matrix
symmetrical. '
4.3.4 . Additional Constraint Relationships

In addition to the joint constraints developed in Section 4.3.3,
other relationships are derived in this section for two types of distance con-

straints, a rolling constraint and a sliding constraint,

TYPE 1

The zero distance constraint requires a point on a segment be
the same as a point on another segment, 'as indicated in.Figure (4.4). In gen-
eral, consider two segments m and n such that T locates a point in segment m-
relative to its own c.g. and T locates a point in segment n relative to its own

c.g. The zero distance constraint equation then is written as:
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o | Xop# Do Try= N g D0, (4.18)

" Xop»Xp  locates the c.g of segments m and n w.r.t an inertial reference

system.
" Twice differentiating this equation yields the constraint
equation ’ ' ' ' '
Xis XD 50 © tity # D, 0201, =
m LA 2 - F££3 2 2 322 (4. 19)
where '

, .—.V_Dr:z [m%@/wn®rn)] -.D,: [wﬁg (wmwrmjl

n
TYPE II Fixed Distance Constraint

_ The fixed distance constraint allows a specified pointv on one

| segment to be a fixed (constant)ﬂista.nce from a specified point on another
segment, as iliustrated in Figure (4.5). -Consider two segments m and n
© such that 7, locates a point in segment 2z and 7, locates a point in segment
h . Also define p to be a fixed distance vector between these two points.

The constraint equation is written simply as

s ;gf"__ 2 ‘» : :
/-o’é‘ Lo' | (4.20)

where
"/Y‘.f.D-lr _X - Ir -' . : E
PEAm* L T Agdn Tn : (4.21)
Twice differentiating eqn (4. 20) yields
' .o g1 2 '
o |20
where A
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SEGMENT n SEGMENT m

INERTIAL REF.

Figure 4.4 ZERO DISTANCE CONSTRAINT

[

SEGMENT n SEGMENT m

INERTIAL REF.

Figure 45  FIXED DISTANCE CONSTRAINT
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/o..=X;?éfﬂn;1 [‘:’m® rm,b.wm@(mm@rm):l
~Xo- D) [ip0rpr0,0 (m,',@rn/]

(4.22)
rearranging . .. .. . - . 2T, :
Xm—/\’nfﬁmz Wsrp earm;] - Dnz [mn ® rn:l
-=/0..7".D-j I:“’n‘x’(‘*’zzlo T, )] /N l:“)m@/‘”m@rm]
z _ z e (4.23)

For the distance constraint the constraint force q must be directed along
P . Define then a unit vector h in the direction of/o .

-z
A /\/mf'-p rm'/Yzz z Tn

1| l/\/m * D T X Dri Tn

(4.24)
Although only the magnitude of the constraint force q need
be computed, for purposes of symmetry and computation logic the vector

nature of the constraint equation is maintained.

'For this reason the cdnstraint force is defined along h by
/- g,A then maintained as a vector by /7/& g) The same procedure is

" performed on the constraint relation yielding the follow1ng

ﬁ/ﬁ[/\/—/\’ fD [mm@rm] -0, [n@r]

+/Z([/;/7)g— {[ﬁn o wn®r)Dm (e )}Lal}m 25)

A is an arbitrary scalar # 0.

TYPE IIl & IV Rolling and Sliding Constraints

_ _ Th.ese.constr'aints provi;ie the capability of modeling the
motion of surfaces which are roiling or slidinngver each other. A diagram
of the geometrical conﬁguratmn and approprlate var1ab1e definition is pre-
sented in Figure 4.6. The relationship at the point of contact is

'
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174 -7
Koga 2 Dl # T, ) = KXo #.03 (ex,,) (4. 26)
The time derivative of this expression is :

o

meﬂn'; wmwﬂ/;”frm)f%-;n’f/\’”fﬁndwn@szfn)f_qzrn’. *

(4.27)

The relative velocity of the surfaces at the point of contact is

Kfff’\/m"“Dzz’zj“m@(’/m*rm)_xn_ﬂ;l‘”ne’% *T, )
‘ (4.28)
The rolling constraint requires that the relative velocity be zero and the -
sliding constraint requires that the normal component of the relative

veloéity be zero. Thus

V.= 0 for roll

REL . ]
- %fz 0’ for s‘lzde (-4. 29)
We have from (4.27) and (4.28) o
s -z . '
ljm # =D ' (4.30)

Note that for the rolling constraint, Equation (4.30) requires that _p?;f .= _Dn"'rn"'

* Note: The prime on r and r , indicates the time derivative of the respective

variables in its local reference system.
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SEGMENT m

SEGMENT n

. INERTIAL REF.

 X,>X, INERTIAL REF. POSITION OF c.g. FOR SEGMENTS m AND n.

Aomty, OFFSET OF SURFACE m AND n FROM c.g. |

1,,,%, VECTOR TO POINT OF CONTACT EACH IN ITS OWN LOCAL REFERENCE FRAME.
‘£ NORMAL TO SURFACE AT POINT OF CONTACT.

¢ - CONSTRAINT FORCE

Figure 4.6 GEOMETRY FOR GENERAL ROLLING CONSTRAINT
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The distinction between rolling and sliding is made by com-
puting the force required to impose a rolling constraint. The magnitude of
the tangential component of this force is compared to the magnitude of the

normal component times a specified friction coefficient.

Thus, /Zl‘l (tangential force) is compared to/@|gn|
where ﬁ; is the static friction coefficient and If"" is the normal component

of the constraint force.

If |7¢] £ A|Za| then the surface characteristics will
sustain a roll. If 9.1 24 |gn‘ sliding will occur.

When sliding occurs the ditection of the constraint force is
along the vector h where
h=(tpL)/ 1 +0%
&= A (4.31)
where #is the normal vector, f is the coefficient of sliding friction and V
is the tangential component of the relative velocity which will be equal to
13 i = . ‘
‘,/7,54 for a true slide (since ¢, ZMZ o .)
The constraint equationiin acceleration form are found by
differentiating equation(4.29. They are:
for rolling; : ‘
s - . . - o . 4 . -7
XDy Jﬂ/,,, 3, )® G Xy r Dy Ayt )® 0, D, /wﬂ@(m,,@p/nfl;z//:-ﬁm Wy ®
/wm@/.g,,frm}/_ﬁy‘zwﬂ@r);—%zwm(& T,
and for sliding; (4.32)

ZL]__Xm ‘Dm—j%7fr%)@ “’m _/i;n;ﬂ”._{/“/?;"rﬂ/é W /] =z Epﬂ—j /wéé’/wn@/’!;?’rn//

R = = o -z’ -7
B, 0, @0, ®('/m"rm/)"ﬁhj“’v® x, - ﬁmjwrz;@r;;_] ~t- (4c 20,7,
(4.33)
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and /[‘ﬁ/)'/7=0 , where t is the time derivative of t

The two equations for the slidirig constraint may be combined

into one matrix equation as

bf‘[j;?z‘ﬁm—jf“/m*-rm/@ -‘;’m;_‘).c;"'pzy-j% #T,/® “";_;[ # A (f-ﬁ/?)Q |
=1 D759,8 (0,04 #5)) 257 (410 (870 iyt )
Qe @5 B 0,0 sl 4t (D75 D) s

_ The right hand side of these constraint equations contains
the unknowns 7, r;l and T, which depend on the kinematics and the geo-

metric properties of the surfaces.

The contact routines normally will compute the point of contact

which yields rq,'r” and the vectors t and h.

In the progrém when a roll-slide constraint is specified, no force

deflection characteristic is specifiéd but the impuvlse option should be used to
insure that the normal component of relative velocity is reduced to zero. That
is one should specify the impulse option with a coefficient of restitution equal

to zero. This will insure that t- VREL=0 at the instant of first contact.
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Calculation of r’, r’, t in the Program
m’ “n

The current version of the program considers ellipsoid-
plane (Subroutine PLELP) and ellipsoid-ellipsoid (Subroutine SEGSEG) -
contacts. Since the calculations of zf r and 1;’ are similar the equations

will be derived together.

The equation of the ellipsoids are
T Ay T =1
T, Apt, =1
and the equation of the plane is '
where A’m, /4,7 are the ellipsoid matrices, constant in the local coordinate

systems and tn is the normal to the plane, a constant in the local coordi-

nate systems.

For the e111pso1d plane contact we have (Flgure 4.7)

2 AT fome . p%,
-Qn Az o Ly le (4.35)
For the exterior e111psoid-e11ipsoidAcontact we have
(Figure4.8) /9»2 'y ﬂ-j ’4771};
7 Vs, AR

For the interior ellipsoid-ellipsoid contact (the exterior

-

of ellipsoid /4?22 contacts the interior of ellipsoid '422 Jwe have (not illustrated)

ok B S _ t=D% ATr
7 Tl “ |’977 %
For convenience we define (for ellipsoids)
£ o= B Trra, . “h T,

" Bt 7 1T
Note &0yt D%z,
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" UNIT VECTOR NORMA
TO PLANE o

SEGMENT m'
SEGMENT n
fn )

Figure 4.7 ELLIPSOID ROLLING (OR SLIDING) OVER A PLANE

SEGMENT m

SEGMENT n

Figure 4.8 ELLIPSOID ROLLING (OR SLIDING) OVER AN ELLIPSOID
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Differentiating the equations of the eilipsoids and planes

yields | rnlz' /m =0
T, = .
72 In =0 afse t.€ =0
D1fferent1at1ng the ellipsoid plane norma.l equatlon
. // A A . T,
Z T m L 2| Y 'm Ym 277 - -z
D em® g 1o W-”mrm T ~Denot,
T | % o | ' I Ty [ ,
which may be written as
- A1/ .
_n< mm _ -
D2 w,,® tyt D), [:_7 2 Loy * M—\——z‘——ﬁn w,, ®Z,
™ T

Differentiating the exterior ellipéoid-ellipsqid equation

. B o _ A
=0 0,y0 by By [Tt L"’”% e oD, @D (8 8 )

8 7V

D1fferen1:1a.t1ng the interior e111pso1d-e111pso1d equatmns

yields
Yo, @4+ I:[— . m:] 7 mm:-f——j%lw o, + D (- z‘,,z‘ }lzlz’l

If we add the relat1on
to the above equation we have a suff1c1ent number of equations to solve

for ¢, r,,',z , T, - These may be summarized as follows:

— . qQ .r - -

Veer : - (4.36)

84



>where f:{:[— Z‘,,; z‘m],z&

T Attt .

mrm, mm

’ -and

for plane _

Fé! [["vtzztbl‘n'y)PALr', ,

for ellipsoid 7, + external contact

— internal contact

A is an arbit'rary constant chosen such that the matrix is nonsingular

(in practice L ~-L ).
[l

The solution may be written in the form
~/ /

— ~ < C7'w
= ¢ - C £ ==
Dh rﬂ W ' “. c ¢
-1 ‘ _ -~/ /
D Ty = 85 Ty - Vg
- D,;' [w.;a tn + F_r,,']

(4.37)
where

. -t -1 —I_' . . .
W= Dm w, ® 'é,—,, -0, w,® f,-, + Dy Apy D v/ee,/_ (Y% )\
for the ellipsoid-ellipsoid contact

. -1 - ~f ' :
C= by A, D,,,A AmT + D A, Dn/(tt.A,‘r.,l) (4.38)

and for the ellipsoid — plane contact

‘ -t : . . A .
C = Dm Ap, D,,,AA o , | (4.39)
i . mIm _ . .
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4.4 TENSION ELEMENT

4.4.1 Specifications

The primary purpose of the tension element (TE) is the simu-
lation of the longitudinal muscles of the human body. It behaves statically in
a manner simular to a linear spring in that when it is subjected to a tension
force f, it increases in length by an amount propor.tionai to F. However,
in contrast to a spring, the TE displays no stiffness when subjected to a

compression force. In this respect it is similar to a longitudinal body muscle.

The TE has been designed so that, under the action of rapidly
varying tension forces, the distribution of strains within the element is
uniquely defined by the strains at the two ends of the element. As a conse- .
quence, the equations of motion of the element are simplified: they depend
only on the positions, v'elo‘cities,' and accelerations of the two ends of the

element.

The computer program inputs required for complete specifi-
cation of the TE are denoted by Lo’ MA’ MB’ MAB,k’ d . These quantities
are defined in the following discussion. N :

Figure 4.9 depicfs the geometry of the TE when subjected to

—
a static tension £

— .
Y

L- >
A B

Figure 4.9 TENSION ELEMENT GEOMETRY
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M

\ The two ends of the element are denoted by A and B. In connection with

Figure 4.9 quantltles are defmed as follows:
= length of TE when subjected te a tension force
,(C = distance from the end A.to the center of mass of the TE
Lo= length of TE when the tension force T is infinitesimal.

’ ,(= the value of,[’c when the tension force F is infinitesimal.

The cross section of the TE is treated as neghglble. Thus,
the moment of inertia about its long axis is negligible. The inertial prop-
erties of the element are completely determlned by the quantities L a_nd/

defined above, and the quantities MT and ¢ A defined as follows:

M, .=total mass of TE

T
¢A’ )] p=moment of inertia of TE about the point A, B and about an
. axis perpendlcular to the long axis of the element when

" the tensmn force F is negligible.

In terms of the quantltles L, L o’ M ‘and . dA’ the quantltles
and MB and M AR 2Te gwen by ‘

A _ o
s =¢A/,_ 2 (4.40)
M= %/L; o (4.41)
p :
=L (M~My-M
2 ( 7 .A 5) (4.42)
The computer program input, k, is a force constant given
by ‘ '

= | L (4.43)
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Where F denotes the magnitude of the static tension force ¥ . The quantities

f, L and Lo are defined above.

To define the program input, d, it is noted that when the
TE is not in static equilibrium, the tension force, ]_:7", can be expressed as
the sum of the force of inertia, the force of stiffness, and the force of
viscosity (or dissipation.) The parameter d is a constant of dissipation

defined by the relation

A L
" Fdissipation =dL
_Where Fd_issipafion denotes the force of dissipation and L denqte.s thf& time

rate of change of the length, L, of the TE;

4.4.2 Derivation

Represent the TE by the discrete system depicted in Figure 4.10

Figure 4.10 TENSION ELEMENT MODEL
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As shown, the discrete systemvis composed of N particles connected by
N-1 springs. The mass of theNth particle is denoted by m . The position
vector of theNth particle relative to the inertial coordinzté system is
denoted by ;77 ; /_f; and /_‘:; denote external forces épplied to the first and
Nth particles respectively. Since the element cannot support externally
-applied torques, it .must be coupled to other elements in such a way that it

will not be subjected to external torques (or force couples.)

The springs can exert forces of tension when stretched but

they cannot exert forces of compression. Each spring has viscous damping.

The TE is subject to constraints (not shown in Fig;lre 4.10)
which insures that all of the particles lie on a straight line (regardless of
the directions of the applied forces ,Z-; and /'_—; ) and that the strains and
relative motions within the element are uniquely determined by the positions

and motions of the two ends of the element. The constraint rela»tiohs are:

(tn=5 )26 (W-%) (4.44)

Where the 53 are constants which satisfy.

0= éz <_§?z< g?zfzsg,fz 64.45)
. o o~ 2=2,N-2
Putting T, = 2 v
T, - Ts

Equation 4.44 may be re-expressed |

‘ ?n=/1"§n)f4 7".577?:5 : _ (4.46)
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The equation of motion of the TE will be obtained by the
D'Alembert method. That is, the equations will be expressed first for
motion in the absence of the constraints, then the modified equations, which

take account of the constraints, can be inferred.

The equations of motion in the absence of the constraints in

- (4.46) are
| d [T\ 9T , 9V ., D _ =~ . -
=, — — = : .
adt ﬁa} 31?1 ar*n 31—); /::Idnz*fé 7.

(4.47)

Where T, V, D denote, respectively, the total kinetic energy, total poten-

tial energy, and Rayleigh Dissipation Function for the system depicted in

Figure 4.16. T, V, and D are expressed as functions of the coordinates
rn and velocttles rn of the partlcles. In (4.47) 3/31- denotes the gradlent

with respect to the components of I‘,z

To obtaln the equations of motion which mclude the constraints,
T, V, and D are re-expressed as functions of _1';,_:9,1‘5 T, by direct -
substitution, employing the constraint relations in (.46} The equations of
motion can then be expressing

@ (97 )97 9V 20 =
atl 95, 9z, 9%, Ity 7

L)% + %+ % %
&r ITs 9-2 91:5 - %a (4.48)

b

where

—~ 4. dr, /= 2
Ty 5}%'(@Jn1*@5n~)

7n=1

*Since we are working in 3 space it seems simpler to write equations (4.47),
(4.48) and (4.49) in a vector form where each equation represents 3 equations
in the more conventjonal notation where 1, would have 3 generalized coordinates

g ) Pra §#y and I, the coordinates Z,, ,3,,‘ '3 In this scheme (4.47) would

be written as "
oT \ - 2T Vv JD = A ;= 1,3
+ + &L = fq, + Fg. ¢= 7
F ag.) agn Ty & ¢ .
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7=1

Fp= 2 %‘Z'(éfnf*éé’N) (4.49)

From Figure 4.1Q the total kinetic energy of the system is

giVen by P .
= 5 | 2
7=z %:1 7, Il‘nl
Substituting from (4.46) and rearranging ieads to
1 a1 2 .1 = ’ TTGEIN
T=E My T3l "+ £ Mp |35 *+ Mag (%4 %5)
' " (4.50)
where
2
My = ,,ﬁ., my, (]—577)
o 2
Mp = &y &
nN
Mg ;nzmnénp_gn)
| - ' .(4.51)

_ The potential energy, V, céntributed' by the stiffness of the
springs may be expressed o
V=22 ko (44)* A4>0
=0 - AAfy<O .
' (4.52)
.Where A/n, denotes the relative elongation of the spring connecting the nth and
(n+1)th particles, and £, denotes the corresponding force constant. The

second of the relations (4.52)" expresses the condition that the springs

exert no forces of comt)ression. Evidently,

A"/n: [Tn f_.Z—_;L,— /_T;Zf.z_?;z!o | (4.53)

Where lf;ﬂ -T, denotes the length of the spring connecting the particles

77|o
n and n+l when this spring is subjected only to a negligible tension. From
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(4.46) :
(F;fz_?n) = [572”75”) /?;_T‘

(4.54)

and so

AL, (577;1 ‘?n)[ 1% - T, I-Lo_]
| (4.55)

Where Lo denotes the overall length of the TE when it is subjected to a

negligible static tension.

Substitution of (4. 55) into (4.52) leads to
: V- H[5 5 Z] i [y,
V=0 SR (4.56)

otherwise

Where
N-£

'<’=,7§z'€7 (gnfz_gn)z

(4.57)

The Rayleigh Dissipation Function, D, is equal to half the
rate of dissipation of energy resulting from the viscous forces. Itis
assumed tﬁat a dissipation element is connected between each pair of
particles. . '

Thus,

(4.58)

Where d, denotes the dissipation coefficient for the dissipative element
between the nth and (n+l) the particles and Afn is defined in (4.55).
Substituting (4.55) into (4.58} one obtains

D:d l?__- |?-

2|8 (4.59)
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where

-Z

d=%1 d?? /:;7;‘}—4-;7)& (4.60)

Substitution of the relations(4.50), (4.52) (4.59) and (4.46)into
(4.48)and (4.49) yields the equations of motion for the.TE:.

23 A N
My TorMys Tp-d( T3, )Jf5=7,
— —

My Tyt Mg Tprd(Tp-Ta)r e Fy

(4.61)
where '
B b(5m%) [o/155] o)k
%o |
: otherwise (4.62)
The definitions of the parameters M, , MB’ MAB’ K, d

given in the first subsection follows from the equations of motion in (4.61)
-and the relations in (4.51) and (4.46)

o . For purpoées of implementing the tension element in the
framéwork of the program, let the point Ta be fixed.in one rigid segment
.vand let tﬁe point rg be fixed in another rigid segrn.ent. Then the following
relations'hips may be written. V '

| I ’mepm_]rm' |
r5='Xn "-D7;Irn. :

where X X, -location of the c.g. of segments mand »# respectively in

m7
inertial reference.

T < location of pbint Th ‘with respect to the c.g. of segment M

this is a constant in m’s local reference.
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r,, location of point Tg with respect to the c.g. of segment

this is a constant in 7% local reference

D,,,R, are the direction cosine matrices of segment m and seg-
mentmM

The inputs required for each tension element are

T,»,%2,T,,22 and the values of the scalars M,, My, Mys,k,d and L,

With each tension element are associated the two constraint
forces F, and F Equations 4, 6l are the constraint equatiohs. The
force( FA)and the torque( -Dm/,:,)are applied to segment 72 and the force
(F and the torque(rn@ D, 5)are applied to segment A (This lS done by use
of the system matrices A, and A 3). The expressions for

are given:

A;rb lr/9 ? rd

Ty= Xy * Dy T 1y
T,= Xf./?,,;’ o ® Tz,
F,=X, fl;”w ®T *—Dm“’m@/ m@l‘m)
“rg /\’77 ;‘_D
-XD;‘.D?? w,,@rn
r5= ).(.77" n?* 6’?7@'1'77 "ﬂn—zw‘n@(‘”‘n ®r77)

where ws,, and W5 ‘are the angular velocities of the respective segments.
Substitution of these terms into the constraint equation 4.61 results in the

form needed by the program. The éimular_ity of this constraint to the other

types of constraints (fixed point, etc.) should be noted. The tension element

. is another example of a case where the system equations are non-symmetrical
as was true for the sliding constraint.
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4.5 FLEXIBLE ELEMENT PARAMETERS

The flexible element is intended for representations of complex,
flexible portions of the human body, including, in particular, the neck, torso,
and trunk. It is composed of a chain of N joined rigid segments. Each joint
has three degrees'of freedom with three corresponding stiffness constants. In
additioﬁ, each of the N-2 interior segments of the flexible element is con-
strained so that its orientation is uniquely determined by the orientations of
the end (or outer) segments of the element. These constraints have been intro-
‘duced to approximate the effects of body muscles which are so connected that,
rather than acting on individual jqints,'they determine the overall flexural
characteristics of the represented body member. Fidelity of representation can

be insured by determination of flexible element parameters from measurements.

Table 4.1 is a summary list of proposed computer program inputs for
the flexible elements. The last column of the table indicates where the defi-

nition of each input is given.

The or1entat10n of segment n relative to segment 1 is de51gnated by

- the three angles On’ 8, (see the discussion in the context of Figure

Zn’
4. 12} In order to avoid 51ngular1tles in certain transform matrices employed
in the calculations (see equation (4.1012 it is necessary to restrict &x to

the ‘domain
-7 < é%n <7

Since there are no restrlctlons on. the ranges of variations of éb and eén, éhn
should be chosen for the angle of bend maximum range of variation. For

example, in the representation of the human torso, forward bending should corres-
pond to the angles ébn and not to é}n. é}n would correspond to sidewise bending
of the torso. It should then be possible to satisfy the above bounds on &

- since few people (if any) can bend their torsos sidewise through 90°.
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Table 4.1
COMPUTER PROGRAM INPUTS

FOR FLEXIBLE ELEMENT

BRIEF DESCRIPTION

set of bias angles

number of segments in
element

first-order taper function
in constraint relation

second-order, interaction
taper function in con-
straint relation
second-order, quadratic-
form taper function in
constraint relation

moments of inertia elements
of nth segment

mass of nth segment

yaw, pitch and roll
angles
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WHERE DEFINED .

Equation (4.64)

First paragréph
Equatioﬁ(4;64)
Equation (4.64)
Equation (4.64)
Context of Equation - .
(4.69)

Context of Equation
(469) -

Context of Equation
(4.63)



EXTERNAL
SEGMENT

- FIGURE 4,11 MODEL OF FLEXIBLE SEGMENT
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In the rest of this subsection, all of the basié geometry of the
flexible element, except details on the joints, is presented. The latter are
discussed in the third subsection. Development of the equations of motion is
undertaken in the second subsection.

As noted above, the flexible element is composed of N joined seg-
ments which are labelled 1 to N. In each segment there is a rigid local coordi-
nate system with orthogonal unit vectors 21”, é: , é‘; . As depicted in Figure
4.12, the unit vectors g:‘ are aligned with the principal .inertia' axes. Zn

is the position vector of the c.g. of segment n.

P 4
The orientation of the e;( vector of the nth segment relative to

segment 1 is shown in Figure 4.12 and are in agreement with yaw, pitch and roll

angles described in Figure 2.7.

» 0>
W~

a7

Figure 4.12 COORDINATES FOR FLEXIBLE SEGMENT
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’ A1
The first rotation is through an angle 19,n about ¢, , the second
: A - - -
rotation is through an angle _+93n about the new €, ; the final rotation is

. A .
through an angle e,n about 3177 (which is the new ¢, .) The relation
’ A AT Anm ’ A1 aAg nT . '
between €, , €; » €3 and e, ,¢,,¢; is
A7 ' ) : , . )
e, Tt .0 0 . Cos &, _o =SNG\ (Cos @, Sz, o0
A7 : . s : ) : . : .
e 2 = 0o ¢os ,e,” S¢n 6x, 0 1 0 -S¢n Q,” ¢os 6, 0
A . ) . : . : .
e, 0 -5tne, (o056, * 576, 0 Co56,, 0 ¢ 1
(4.63)

In accord with a suggestion of Dr. Ovenshire, )y 1 Oz, , 65, Will be

represented by the second degree polynomials in the relations

: * 7

* Fer (7 Gy Gy Fez (?’) %n i *Fo3(@) Gy &N

# A () 6y Ry () 6y + A () O

N.
»=2,N ‘
= 1.3 (4.64)
where
% : L vz \
¢» = a bias function with 6,, =0 lor 3 =N
Feg (W= 8oy s goyN) =0, hog(N) =0 (4.65)

. ) 4 ) ,
The bias functions 9‘~n and the taper functions 704.;. (), Fej ), %‘./_. () - are
all program inputs. :

o>
N

0>
W =




The joints are located in the standard manner:
R, = 2, LA _ ‘ (4.66)
where Zi; is the location of the nth joint, also

—

R, =2 ., * ?.H,’h 7 =7, N-1 (4.67)

where 7§;ﬁ are defined in Figure 4.11.

The connection constraints (that is, the condition that the joints
connectlng segments do not pull apart) are contalned in the relations, (4. 66)
and (4.67). ’

The introduction of the bias functions, G:i, also allows the latitude

of choosing the principal axes for the nth segment to coincide with the unit

vectors 3;? . Thus, the Moment of Inertia Tensor for the nth segment is given
by
'3
g, -2 78 &
7”7 pof < A ¢
(4.68)

The inertia elements ﬁﬁy are program inputs, as are the masses M, of the

segments.

The Equations of Motion

The translation equation of motion of the nth segment of the flexible

element may be expressed

;'._ R Y —C —_— -
My, 7, = F &, +F, + F, 5” *ﬂ,,
(4.69)
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where M77’ and 7,7 are as previously defined, and

5

42"1!

(£ T

¥

M

-

c

where

£

I

b

Z

2

= an external applied force at the point with position vector

(see Figure 4.11)

(4

= an external applied force at the point with position vector
(&)

= an external force applied to a point of the contact surface

which is rigidly connected to the segment n

= the summation of all constraint forces acting on segment n as

a result of the configuration constraints on the flexible element

The rotational equation of motion of the nth segment may be expressed

o _a—-)- _ — - -y g -Jjoints ..
Z ¢77 ” '/\‘/757714_'NN ahN'fr‘L QF-,-; "'Nn 7y

(4.70)
and E,,c are as previously defined and B

total angular velocity of nth segment

= an external torque (thaf is, force moment and/or force couple)
~applied to segment 1 through application at the point with

-
position.vector £, .

= same as N'1

the point with position vector (IZN + /077 é 1“) .

except applied to segment N through application at

‘s . . . X s
position-vector of point of application of the force F_,7 relative
to the c.m.of segment n. This vector depends on many things

including the dimensions of the contact surface.
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— JOINTS
N, = net torque applied to segment n as a result of stiffness of the

joints which connect this segment to the adjacent segments n-1
and n+l1. '

h, = the summation of all constraint torques acting on segment n as

a result of the configuration constraints on the flexible element.

In the successive sections, the necessary expressions for forces,
torques and constraint relations are derived.

Expressions For Torques Due To Stiffness Of Joints

Let ﬁh n+l denote the torque exerted on segment n due to the stiffness-
b4
of the joint between segment n and segment n+l. The definitions of N 1 and
JOINTS : . . n, n¥
'Nn . result in the following equations:

=>JOINTS

b

Y

N, = Nn,n+1 B Nn-l;n n=1,N (4.71)
where
> N
Nn,~+1 = NO,l =0 . (4.72)
> - L . . L
The Nn n+] 2T computed using the same coordinate designation as de-
>

scribed in Section 6.0 and indicated in Figure 4.13.

Figure 4.13 JOINT COORDINATE SYSTEM
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orthonormal coordinates defining the segment axes for

the nth segment
' ' (4.73)

orthonormal coordinates defining the joint axes
for the nth segment (4,74)‘

The program provides several methods of determining the torques be-

tween the segments defining the flexible element as indicated below.

=1

n,n+1

=3

n,n+l

=}

n,n+l

n,n+l

torque equations developed in Section 6.1 (4.75)

torque equations developed in Section 6.1
using globolgraphiC‘répresentation of joint
stops (Section 6.2) o (4.76)

torque equations developed in Section 6.3

(Euler Joint) . _ 4.77)

torque equations developed in Section 6.3
using the Globalgrpahicyepresentatibn of the
joint stop torque . C (4.78)
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The Force-Type Constraint Relations

- From Figure 4.17 and the discussion in the context of (4.66) and

(4.67) " the connection constraint for the joint between segment n and segment
n+l is

- -

2 + 7 = 2 + .

r
” %77 27+ 7 747 +7

ﬂ(4;79) -

These relations do not include the connection constraints between

the Flexible Element and other segments it is connected to. Differentiating
(4.79) twice yields

-
— -

- - r = - f w r ‘
2n+wn ® rn,?? z77-’7 werQ 27, N+T w-n@( 7')® "’);7'7)"'6077-;-7Q w77+1® r-n,nn)
1 (4.80)
Let
LY } .
f, = constraint force exerted on segment n due to connection
_constraint between segment n and segment n+l. '
Then =, A -
= - = N
Fn =T Ty 7T
i (4.81)
~¢C - s - = . = Corgue
n, = Ty @ Fn T1,5 @ -y +' 7
(4.82)

- < .
where ﬁ» and.;” are the total constraint forces and torques on segment n
(previously defined)and

£ o= =0 (4.83)
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Forces and torques resulting from connecting the Flexible Element
to external segments are represented separately by IE'; , 7-';, ’ f\7, and NrJ . —77_:“"“

denotes the net constraint torque acting on'segment n as the result of torque-

type constraints.

The Torque-Type Constraint Relations )

This subsection covers the formulation of the torque-type constraint

relations. The correspondlng compatibility relations are considered in the next
subsection.
The relations in (4.64) can be expressed more generally

: _ =7,3
ez'n - Gc'n [ 8175 Gy 937)] % = Z,N

‘\- Av

' (4.84)

The functions 6‘-” can be evaluated in a separate subroutine. This procedure will

allow more latitude for generalizations in the functional form.

From (4.84) | 3
%’77 :;'=7 m/ [ 172 o> 9377] é;‘/v _
© (4.85)
where '
| i T ;;4 | n= 2,N |
N - . (4.86)

Now, the 9 are nonorthogonal components of the relative angular

velocity (Zn-[{; . From (4.65) and Flgure 4. 12

@l ~w) =6, & +8. 87 .6 -8 sing_+e wso
77 7 = %% s _+' L ."'z;; “C, %7 G, 2 17

(4.87) ]
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- 27 At
Put a4, = »
- At ATl
2, =-¢ S 9,,7 *+ e, aasem
-~ 2 _ - v
2y = e7
(4.88)
Thén, _(4.57) may be reexpressed
3
— - . — 7
celyy —lhy F ‘gf 2 a’a’ : o
B ..(4.89)
—»
Introduce reciprocal unitary vectors %6- such that
—\” __5” - )
#o Ay = 5;‘/.' (4.90)
From (4.85), (4.89) and (4.90)
3 3
. 3 .
56 27 =00 276, .. 8
"=’, 7 < =7 ;‘:/ ¢ 726 4 AN
P5ure (3
- - Y" SN
= a, G .. 41 0
g /.=7 [ 774; # ’é; K KN
or, employing (4.89)
—_— ] _ + (‘—; —
“)77 - QJ7 - 677 N 7 .
, ' (4.91).
+
where GW denotes the tensor
3 3
+ -2 ) N
G =2.0 a7 ¢ .. £
7 =7 }':7 ¢ : 7"/ f
' (4.92)
Rearranging (4'91) , one obtains* _
—_— + - -+ -
(‘/77+<G77—_I)'aj1-.677'w~—0 ‘ .
7=2,N-1 (4.93)

*Note that G, =7 (where I denotes the identity tensor.) So (4.93)

vanishes identically when n = N.
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)

Differentiating (4.93):

5}7 *[G;’I] -, -6, '$~
: oo é;'.625 + é;;- a&
' (4.94)
In employing .(4.94) , it is to be observed that’
. i, , |
"_)77 = c'=7' w; é\; 7 =1,N
(4.95)

A logical base system in which to express the elements of the tensor

el
/

Al
GI, is the e, system. In this system
4

GT = G!7 &
7l PR o

(4.96)

To  evaluate 'G‘T; ’ a.:." and -l}_ can be expressed in terms of the unit
AT . . _ o )
vectors €

From Figure 4.12

e = 31-cosé ' &’ : s’
.7 T T 2n POy * €, 0056, snb, -C, sin 6,
(4.97)
Substituting (4.97) into (4.88) yields
: 3
-» » A1
B R
/ : (4.98)
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where

7 ‘ o /
7Y _ o, o
(c‘.;.)— StH 6") 7+ CaS 6’7” | 1/
cos gﬂm‘% “5%75‘.”’;» -5"”4277 (4.99)
2. = e”)? &l ' : '
2 Pt ( )z.; F (4.100)

where ((C” )7 denotes the transpose inverse of ¢7”, given by

- Co8 6, SNy, Cos 6,,,
p -Scné, ——
Css 277 ) Cos 9277
-1 . . .
(c%) = S 8,,, 5¢77&,,, wcoso,, SC»é,,,
cas 8,,, | Cas &, ,
/ 0 0

(4.101) .

The singular points of the matrix in (4.101) can be avoided by limiting the .

range .of variation of & , as discussed in the first subsection.

Substitution of '(4.98) and (4.100) into (4.92) leads to
3 3 3 3 —~
+ A1 —~ -7 Al
=22 e ) rx 2 " ¢ el el
” =1 j:‘l ¢ [K=1 !‘1 K 7KL ( -lf ]—

Comparing this relation with (4.96», it is.concluded that

3 3
7 _ o Ty~
64’;‘ - Z Z cc‘/< thz, (¢ ),z;‘

- R
The next step is to differentiate G_ .
From (4.96) .
s 3
.o - + _ + — 17 A1 At
G, =&, 8G, -G, ®u, +2L2 G . & €

i jerolp 0 s

7= 2, N7 (4.103)
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From (4.102)

Now

or

where

Also

where

Further,

or’

where

M kd»n

o~
7 ke i1 K 45

i — (/\/ 7
c'n G CN)" i
* ket ﬂll 4.'/< WK—A ‘d/-
—~~ . —~~ R
= re 5+ e, 5
o K 3 9177 77 3 92}7 zZ7?
/\; /-\7; . —~ -
CLK = an 7 Dzuc 9277
S A R
LK P!
E4ry
&,_1 ~ . —~
N - N . £-N
[c 4 j 5;_-7 Gn /;;.z 27
> | 3(6")_t< o
£y = 2 N m=,2
¢ 3 By
anz :2? — Nkl 811y
”M=7 29%’” :
. "3 _ .
=7 .
v 3—5 :
G, = 7L
: ¢ 6oy

(4.104)

(4.105)
(4.106)
(4.107)
(4.108)

(4.109)

(4.110)

.can be evaluated in the subroutine which evaluates 6;”¢£ and 657,
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<17 —
In summary, G, can be evaluated piecewise. First, the quantities &),

and &_J; are integrated to obtain UN and &), . Then 6,,, can be determined

from the inverse of (4.89):

8, =% (By-2)
(4.111)

The quantities & 7,...,3 can be evaluated either by integrating <9;.N or

L, €=
N’
by employing the direction cosines of segments 1 and N, which are obtained by
integration. The quantities 4,, and é,;,,(za 7,3 3772 4 N-1) = can then
be obtained from the relations (4.84) and (4.85). This procedure insures the

satisfaction of the configuration constraints. G, and 6 mie C31 be eval-

) — nKkLm

uvated from(4.109) and (4.110) nd 017;'7—» can be evaluated from (4.107)and
—~ < ed - —~— ' - .

(4.108). Then _c‘?j< .Ch ,(c;;) " and (c'V)l;. " can be evaluated from (4.99),

(.4.1.05), (4.101) and (4.107). Finally, G:; can be computed from (4.105).
The discussion of the quantities which appear in the torque-type con-

straint relations is complete. In the last subsection, the representation of the

constraint torques is considered,

The Constraint Torques

From (4.70) and (4825:‘ the rotational equations of motion may -be

expressed p
’ N - fo torgy -
H” _7777 rce__.hw ‘7'7— e =.N,7 a.F/z/l'ec{ |
n=1,N - (4.112) '
where
a 4 -
= — 179
> [¢77 "]
. p e o eente (4113)
—_— . - — . bt — JGC”
N, applced = N, 6, + Ny Sy + T @ Fp, + N,
C(4.114)
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-— '/’07'66

7777 = 'rn,n @ 707) B rn-r,’n @ fn-rﬂ : . (4,115j
— tor?ﬂe . . . . .
and 7, denotes the constraint torques resulting from the constraint -
“relations .
) -r|-4&, -6 -4, =0
é)” + 677 7 ” &jN =
”7=-2,N-17

(4.116)

_ The easiest way to infer the compatibility relations among the .con-
straint torques is by the Lagrange-multiplier method. If the constraint re-

lations in (4.116) are represented in the form

N
7” —

Z Ay W, =0 =2, N-1

7=1 - (4.117)
N-7

-Atorfa& = . o> .

7y ‘Z A © AR (4.118)
m=2 - ’

- where the ‘2”7 are vector Lagrange multipliers.

Comparing (4.117) with (4.116) it is readily concluded that

—\torf(/e_ i-
o T Ay . =z, N (4.119)
. N-1 7 ’

—‘z’arfae = Z - . + ""I ] .

7 Aom [Gm . (4.120)
™M= 2
N-1 : : )

—sforfoe - 4 _ .

Y =‘f Apm * Gon (4.121)
”=2 -

Elimination of 7;" fiom the relations (4.119)-(4.121) is immediate, and

leads to the compatibility relations among the torques.
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It is apparent that the equations of motion in (4.112) in conjunction

with the constraint relations in (4.116) can be solved uniquely for the a—/;

-—_—

and the A, .
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4..6 . SINGULAR SEGMENTS (MASSLESS ELEMENTS)

In some simulations, it may be desirable to ignore the mass and/or
particular éomponents of the inertia tensor. This is feasible if sufficient
consfraints exist to define the motion (i. e. the system matrix is non-singular.)
Because of the generality of the program, it is difficult to establish a necess-
ary or sufficient condition for the assurance of a non-singular system matrix.
But, for example, a segmeht connected between two other segments .in a chain
R wvi'ti:h at least one pinned joint may be assigned _a'singular mass of inertia

matrix.

The program will accept these singular segments without special in-
put. If the mass or any principal component of the inertia tensor is zero, the
program will treat that segment as singular. It is assumed that the user will

supply sufficient constraints to avoid a singular system matrix.

The effect of this singular feature is unknown, but it is conjectured
that if a mass or inertia component of a particular segment is very small, the
" use of a zero value may eliminate undesirable modes of oscillation in the ‘
system. As a matter of interest, the program will accept negative values of

mass and/or principal components of inertia¥,

*In the spring of 1973 Dr. Ovenshire asked Calspan to make a series of runs
uls'mg modified masses and inertia tensors.. ~Dr. Kane at Stanford University
had shO\;vn that in a connected set of rigi.d bodies that the definitions of mass and
inertia were not unique. Calspan does not know what Dr. Kane's method is for
determining equivalent systems but the following theorem was proved by Dr.
Fleck at Calspan and used to compute accurate equivalent sets. Dr. Fleck

assumes that this must be Kane's result.
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Theorem on Equivalent Systems.

The following is a proof for equivalent systems applied to a system
of n rigid bodies connected by joints. Consider n rigid segments linked
together in a tree structure. That is there is only one path through the

structure which leads from any segment to any other segment.

Define: -}_fk  be the location of the center of mass of the kth
' segment
my be the mass of .the kth segment
§Dk be the inertia matrix of the kth segment
Jk Be é.ngula;' velpéity of the kth segment'

Ty; be the location of jointj relative to the center
of mass of kth segment. This is defined only for

joints linking segment k to adjoining segments.

?;J' be the constraint force acting on segment k at joint j
which prevents the joint from separating '

Fu .be_the'lth external force acting on segment k

ka location relative to c. m. of point of application
of the 1th force on kth segment

Tk be external torques (couples) acting on segment k.

The equations of motion of this system are:,

’??7 X +Z Fp. = 2 Fy K=:1,N Ab(1inear)
K Kk F3 K; 7 LY .
(4.122)

3%/‘(¢K“Z) +Z?kj a’p‘{j =£Z P/q ®Fgy * 7/; K=1,N (angglar) o
7 .

(4.123)
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Subject to the constraints

—

K

X +\rkj = x-z-" er . . 1: . 1’ MJ“I'é

(4. 1_24j

Note that the sum over j in the linear and angular equations is

taken over only those joints which a

re directly connected to segment k.

Consider the transformation of variable:

. N
777l< = 777K + 8’( ’ . KZ1 sK- =0
P T Pe” ; 5?::,- "kj-"(*'{f.i @
e m T N | o
. = . + : . . L
& ks ko - (4.125)

- - -
i = ’?kj * Sk,-_{(x,( + Ty )

where Skj. is the sum of the 5!’

>of' the segments which méy be reached

through joint j from segment k. The Ck are determined by the relation

o = _ 5 ey
7y Cy »-Z S Tj
7 S

Theorem: This transformation leaves the equations invariant;

that is the new equations of motion

can be written as:

“" o -3 _ B
Tk Xk *Z"}.‘ “Z_”k,c

PN x mw

2(PP) L7 @ Fy

ot : ;_ 4 .
_ Subject to the constraint

¥

* —
+ rkj

Xk

£ :
. ~ — (4.126)
£

N A
X -'jf : (4.127)



The proof is straightforward by substitution:’

r - x -
My X+ JZ'FKJ-

Then _ .
me %"+ S8 < m %o+ IF,
Jd ) i J
because Mk C—,-K - Z Jk —Fkac
J J
— -_—3 ”®
and

(et &) (%, - ) + (B #4, (R + F)
o J o

For the angular equation, consider the following substitution:

J

rearranging

— - * - X —_ - i - = _
Zh; @ fy ~ T u® by - 2. 7 ® F

'%?k;‘pé,(

- - % = . — — o o
+ Geo Zf - G, ® (mg X} +§;7C,<JT’)+‘_Z d¢; Fi;@ (X
. . . . J . ‘L "

. o - . ox

but S T8 (Fry) =" -3 8.7
= hnd R of
< K; ij® l'kJ < K; kJ.@ o

fl

d[—‘* I I A
¢ ,r"./' .?.w"]_. .

-d B
. dt [% ka rKJ"® ("k_,‘ ® UJ;:)]

— R - * . —= —_ o — "‘b‘ ."‘ o= H e
Ty @ fg T 2 fa @y = ZhOfy "7 f0hy "L 24,
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- Lo
m;t C’k)g Xk

—

h kj.

20,

— — _ — = . _
Z TG ot - ; @ Ol = jZPki@ fij = 3 Pe® P + (7857,

2 = FTU : X
hk?k +‘Z'ICK.-/’7/<CK 7"25;‘ I"k',‘ (JK '/‘Z.é;) XK
. J J. j J J A J‘ J '

).



and noting that

(Z6F - mg")-o
yields

— — - — — — — ——
Zh o f, ZH®E, - SF. - _d FE e
<k Kj 1301;, ke ,Z K, ®ﬁ<j % e, ® Fry i JZ‘-JKJ 3 @(FKJ. 8 W)
which completes the proof.
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4.7 : DESCRIPTION OF THE MATRICES IN THE SYSTEM EQUATIONS

Now that the constraint relationships have been derived, it is appro-
priate to discuss the overall set of system equations indicated below in matrix

form.

MX+A Frd.. o= ‘Inear acceleration . . (4.128)
‘ “ 2 7% (inertial ref.) L

PO+ Ay TrtA, ¢+ Az §* Aze T = Uz angular acceleration .(4.129).

(local ref.)

with constraint equations of the form:

. oy joint linear position . (4.130)
ByX # Bz w *'B’-”'f" K constraint o '
B, © + By t=V joint angular position /(4.131)

4 constraint )
.33,)'(' *-Baz ® fﬁaf g= 5 5 other constraints* 1(4.-1"32)
. ‘ flexible element constraints
w =V
Byz + (4.133)

When discussing the matrices of vectors of the model, it is convenient to talk
in terms of the 3 x 3 submatrices, or 3 x 1 vectors that are involved. For ex-
ample, the inertia matrix ﬂ for a model with N segments may be described as con-
sisting of N, 3 x 3 submatricés ﬂ( . The matrix ﬂ/ ié a diagonal matrix (since

we are using principal axes as a coordinate system) with the

* Note, for the sliding constraint, or when tension elements are used,Eal and_giu
are not the transposes of A,;, and 4,,. Thus when a sliding constraint or tension
element is active the system equations are not symmetrical.



diagonal elements equal to the components of inertia about the X, y; and z
local axes of segment i. The matrix @ is the diagonal matrix which is the
collection of the n matrices ¢; . Similarly the mass matrix Mis diagonal
and is the collection of the _submatric‘es m; ; which is a diagonal 3 x 3.
matrix with the mass of segment i on the diagonal. Thus, unless it is speci-
fically stated to the contrary, when we refer to the element in the i row
and j* column of a system matrix we are referring to the ¢/ %/ submatrix. A
diagram of the M and ¢ matrices illustrating the above convention is pre-

sented in Figure 4.14.

Linear Joint Constra'int

Consider the linear joint constraint equation derived in the previous

section and repeated below for éomparison.

. . -7 . -7 . -7 -7

Xn__)(m_-pn [r’z,_/. @ (.U”) # 772 (rm‘j® wm )=-D777 ,‘l;wmQ/wm® rﬁ?/‘)] -—Eﬂ [uﬂ@/wn Xrnj)]
Compared with the system equation

By K+By wrBuf =),

There will be an equation for each joint J fbr-j =1,J. "The
matrix B,, will then be an NXJ group of 3x3 matrices. 'For joint j there will
be the identity matrix in row j column m and -I in row j column n of B, . A
schematic diagram of _Buv is presented in Figure 14.15. Matrix B,, is also
‘T X N with the entry for jbint j indicated in Figure 4.1 . V, then is the

right hand side of the equation and also appears in Figure; 4.16..
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ROW i ——>

ml-OO
om"O

oom

COLUMN i

ROWi >

ocom
QS'QO
_r,& Q0

COLUMN i.

Figure 4.14. THE ith ENTRY IN THE MASS AND INERTIA MATRICES

.
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ROW j

¢oL. - CoL.
INTE

-1

=)
o
00=
cao
00
coa

00
o
Q

0 J ROWS

N COLUMNS

Figure 4.15. Byq MATRIX ENTRY FOR JOINT j
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B2 \Z]

ROW j—s- | @y | ROWj—=| 7"
coL.  cod.
INT(G) 3¢t
% =Dy {1y @) | 7=0p " [0 ®lw & ]
a, = D,r" (rni ®) ' - o ‘Dn.1 [“’n®r‘w|-f® "n,jn
M= JNT ()
h= 54

: ‘Figure 4.16. By MATRIX ENTRY AND V4 VECTOR ENTRY FOR JOINT j
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‘Angular Joint Constraint

The angular joint constraint equations have three different forms
depending on the type of joint specified. These equations are the following:

' |
=0 free (ball § socket) joint
D%, =B %, =0 locked joint

d. -
e /z-/m)/ T V=D JrAhht
[/‘”p'bn )—[mm-hm):) _D,;Iw,Z@/),,

pinned joint

The matrix equation for the above equations is
42 w fﬂ?4 = Ié

Again for ¥ segments and J joints 5,, will be <7 x N collection of 3x3 sub-

“matrices. The particular entries depend on the type of joint specified. A

typical entry for joint j is given for B,,,B8,, and /, in Figure (4.17).

Other Constraint Equations

The distance, rolling and sliding constraints derlved in the previous

section are swnmarlzed below. The fixed dlstance constraint is:
ﬁ[ﬁ [x,,, S DAL ® Gy # 55,0 ]}f,t(f ht)g =k
=4 /- [ﬂ (,zwfw,zer J) _Dz(m@wm )] |f’|

'I'he r0111ng constralnt equation is:

1/j +T,Jo f.D [4;*1'”]@!1)”'%

1§=ﬂ:[w ®[w @U £T,, }}:,f_D w @r'-ﬂm’ [wm@ﬂ»%é%fr,,;})]%lwmar,;

The sliding constraint equation is

ht. [x XD Uy #my ) @ s, 7 D5 (1 I /@wnj+/t(f/>/;/g=V
g = my -l hy)




el

- : - o 1
t=
COL.M co‘LN
FREE An= %, =0 B=I =0
LOCKED am=p " B=0 T=0
: _ : -1 . . .

ap=p " See Eq. 4.16

PINNED ap = EhD 1 B=(Ahn) r= (‘”n' hp - Yni "m)Dn'1 wiiRhy

| o= (i D, "

Figure 4.17. Byg, By 4 AND V, MATRIX ENTRIES FOR JOINT j



¢ is the derivative of the normal vector at the point of contact and ¥y

is the expression for V3 used in the rolling constraint. V. & is the relative
velocity at the point of contact, )

. . ° . _.l -z ) . ’ °
K?JXnTXn*pm wm®(jm*rm/_al w,,@ﬂ/,,jr,,)
The matrix equatibn for the above comstraints
BNt B, -“”‘-_535 7=V
Define L to be the number of these constraints. The matrices B,

and 'B,, then will be L x N and B, will be L x L. (See Figure 4.18.) -

"It should be noted that for the sliding constraint the entries in
and B3, are not the transposes of the entries in 4,; and 4.5 . Foi"example,

By, has an entry A¢ but A;; must have the entry AA. or the entry I (unit
matrix)

»Flex"ibl'e Element Constraint

) ‘The constraint equation for the fleiible element is equation (4.94).

The matrix form of this equation is written as

Bgz o= \Z:

Definition of the System Matrix

The system equations, ( 4.128 - 4.133 ) can be written in general
matrix form as: ‘

sX =« | (4.134)

~

where S 1is de_fined as the. system matrix and the components of equation (4.134)
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921

Biz

ROW f-» o |-a X +

B 4 -5y 500

I Tl
M N M N
CcoL. coL.
" ZERO msr.‘; a=1 A —pn;f '(rm'e_g 7=0
B,= D,* (r,z )
FIXEDDIST.  a=/(h) B,=h h D (r,e 7=(Fhh)
Bn=4 hDe
.‘ROLI..ING ' oc=f ﬁmrﬂ;;f((«{m??;ﬂ./e 7= 0
B Rl O Y.
SLIDING a=s(t)  B,=- z‘-ﬁ,,‘,’((,'/,,,m,/é 7=1l~/h.

Bss

CcoL.

v =‘Dn-z I:“’ nQ/‘“nern /]
=D [ 0,858, )]

V=/7fb _ﬂn-‘lw”e/m”e,rn) _

D2 o, ®5,) ]~ 1P1% 7

o YoiZ Dn-z ‘;’ng(‘;’rzeﬂn*rn)}_] # ~Z;;j“’n81;z

R/ [w,’”e(“’me/“/m"rm })]-_p,;?’w”px;n

y })'= ﬁ [i- Z/z;”"l‘.' /411]

" WHERE V gy IS THE RELATIVE VELOCITY °
. AT THE POINT OF CONTACT

Figure 4.18. Byy, B3y, Bggand V3 MATRIX ENTRIES FOR ADDITIONAL CONSTRAINTS



are defined below.
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SECTINN 5
SOLUTION OF THE SYSTEM EQUATIONS

The system contains 6N+6 M+3L equations. The current version
is dimensioned to handle 30 segments plus the vehicle and ground with 21 joints

and 20 other types of constraints yieldiﬁg 420 equations.

Due to the large system size, sparse matrix techniques are
employed. In addition, since M and Qare dlagonal, special subroutines

(DAUX ) were written to produce the reduced set of equations ‘involving only
the constral nts by block reduction of the system equatlon 4. 135)

) »
Gf tGat # G539 46, TN,

£ - . . 5

Caf + Cou¥® + czs’g +Crp T % V,

‘c/s’c * Ca% # 5’333 t Cpp T =

[ 1
S

C'/ff + cz{.f‘ 4-6’343 * Cqe T =

The above equations are solved by subroutine FSMSOL which is a routine using
a Gauss elimination process specifically designed for sparse matrices of the
type encountered in the model. The current version of FSMSOL takes advan-
tage of the symmetry when symmetry exists. Although the equations are
written in a symmetrical form, the addition of the sliding constraint and the
tension e€lements destroy symmetry.

After FSMSOL has computed f,t, q, and t subroutine DAUX com-

putes the linear and angular accelerations from equations (4. 54) and (4. 55)

5.1 SYMMETRY OPTION

If either of the symmetry modes is exercised modifications are

made in DAUX after the contact routines are executed and before the solving
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of the system equations for f4,9 and *. The following tables indicate the

" specific symmetrical configurations available by specifying elements of the

NSYM array and the corresponding modifications in the DAUX routine.

. NS.AYM(J) ‘

Normal three dimensional motion for body éegment J.

= o
"Therefore a complete blank card will enable the pro-
gram to operate in a normal manner.

NSYM(J) = T The motion of body segment J will be restricted to the

. x-z plane with no lateral motion. Hence it will be two
dimensional. - -

NSYM(J) = K Body s»egmentsv J and K are to remain symmetrical with
no lateral motion, The motion of each will be replaced
with their average and restricted to the x-z plane.
NSYM(K) must be equal to J.

NSYM(J) = -K Body ségments J and K ére to remain mirror symmet-

B rical with respect to the x-z plane. Equal but opposite
lateral motion is permitted. NSYM(K) must be equal to -J.
‘NSYM(J) f=U1,,U2_ and U2 f=U1_,Ul_and U2_~
. b4 X .z X z y
=0 no change - no change
=7 fJ.=o no change
= > = =
K(K>J) £=0 | - £p=l/2(E )

= K(K<J) fJ.=o : : f.T=fK ’

=K(K>J) f;r=(f_]"fK)/2 : | ; f.Iz(fJHK)/Z

= -K(K<J) fi=-f o £1=fp

: ; :

* Reference to the x-z plane are to a plane parallel to the x-z inertial plane.
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SECTION 6
COMPUTATION OF JOINT TORQUES

For purposes of computing torques at the joint a separate coordinate
system is defined for the joint. The joint coordinate system is related to the
principal axes of the segment by the standard yaw, pitch and roll'angles'as dis-
played in Figure 6.0. Note that the joint coordinates are defined for both seg-
ments that are attached at the joint and joint torques are then computed using
the relative angular orientation and velocity of these two coordinate systems.
These two coordinate systems are fixed in each segment and do not move relative

to the segment.

As an example consider the two coordinate systems presented in Figure
6.1. The h and h displayed there would correspond to the 03 and U} axes re-

spectively. The hA and hé axes would correspond to the 63, Ué axes defined for

the adjoining segment.

Joint torques in the program are computed by a choice of three routines.
" Subroutine VISPR is described-in Section 6.1. It is used to compute torques in
the standard ball and pin joint. A special model of a mechanical joint termed

an Euler joint is described in Section 6.3, Subroutine EJOINT. This is based on
the standard Euler angles as displayed in Figure 2.8 using three axes of rotation.
Either VISPR or EJOINT may be used with or without the global graphic joint stop
representation described in Section 6.2. '

The ball or ?inned joint may lock. The Euler joint may lock oﬂ any
combination of its prinicpal axes. If a joint goes from a free to a locked state
or if the Euler Joint changes its state (free or locked axes) a special impulse
subroutine (IMPLS2) is called to correct the angular velocities of the segments
so that the required components of relative angular velocity of the adjoining

segments (those connected by the joint) are set to zero.
The ball joint is either free or completely locked. The pinned joint,

of course, can lock on only one axis, in which case it is completely locked.

The Euler Joint has seven different locked states and one completely free state.
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The decision to unlock a locked joint is made by comparing the
locking torque to an input torque that is prescribed by the user. If the
locking torque exceeds the prescribed level, the joint is unlocked. 1In an

Euler Joint, the user may specify a breaking torque on each of the three axes.

The user specifies a minimum torque and a minimum relative angular
velocity at which the joint may remain unlocked. If the locking torque or the
velocity fall below these specified levels, the joint will relock and the vel-

ocities corrected by use of the impulse routine.

* The spring functions used to define the restoring torque on the ball
pinned, or Euler Joint are defined in Section 6.1. In this definition, a linear
torque vs. angle is prescribed until a specified joint stop angle is reached.
For angles greater than the joint stop, a quadratic and cubic restoring torque is
added. This effectively defines the joint stop as a 'soft' stop instead of a }
'hard' stop.. That is, the angular motion of the joint may actually exceed the
specified Stop but a progressively increasing'restoring torque willﬁbe_applied{
Wheh'the’Globalgraphic option is used, the restoriﬁg'torque can be defined using

thé'general function definitions as described in Section 7.5.

. The usér has the option of specifying that an impulsive torque be
applied when a joint first enters of reenters a stop. In a ball joint; this will
be applied on either the flexure or twist axis. For an Euler Joint, this torque
will be applied on the pafticular'axis involved. If the Gldbalgraphic option
is used, an impulse may also be specified on the axis determining the Global-

graphic equation
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( ,,é;,@)é- principal axes of the
- . segment
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A
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<
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joint coordinate system
o : '

o'} € % PITCH
+ . ‘ N
6, * ROLL

Figure 6.0 DEFINITION OF THE JOINT COORDINATE SYSTEM
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6.1 SPRING AND VISCOUS TORQUES -

‘ Subroutine VISPR compﬁtes the torques at the joints as functions of
the relative angular orientation and velocity of the adjoining segments. The
_‘spring and viscous coefficients specified-on the input cards are used for the
functional evaluation. The coordinates used for the joint torque computation

are illustrated below.

_Figure 6.1 JOINT FLEXURE AND TORSION (TWIST)
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Two orthogonal unit vectors are associated with each segment at each
joint. Let hA and hB be the vectors for segment k(k=jnt(j)) ahd th and h'B
be the vgc;o:s;fop segment j+1. In the rest position (no torques) hA is aligned
with h'A and hB is aligned with h'B. The present input rogtings,gllow the user
to specify the orientation of these unit vectors with respect to principal co-
ordinate system . of the segment. Thus, for each joint the user specifies the
yaw pitch and roll angles of the axes of the joint as they are 1ocated relatlve
to the prinicpal system of segment k and as they are located relative to the
principal system of segment j+l. If all zero angles are specified for any of
these segments, the hA vector will be parallel to the z axis of the segment and
the hB vector will be parallel to the y axis.

The flexure angle _(e) at the joint is computed from the relation:

W-I(AA\':A:;) E (6.1)

The magnitude of the flexure térqué\is cbmphted using the flexure spring co-

efficients. The torque vector is parallel to the vector hA ®h'A

The twist angle (¢) ‘may be computed from the relation:

m-,/AB.hB) ) (6.2)

where ?‘B is the unit vector obta’i_'hed by 1:otating hB through the angle 6
about the hA®h'A axis. In relation to Euler angles & is nutation and ¢ is
precession plus spin.

The rotation operation is -

hg=(pp-hgt(hg-pp-hg) cos 6 + MG}L@/JB
where u is a unit vector in the hA®h A direction.

The magnitude of the twist torque is computed using the torsional

spring characteristics. The torque vector is taken along the h'A axis.
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For a pinned joint, only the flexure torque is computed.

The present routine computes a viscous torque from the magnitude of
the relative angular velocity vector using the flexural viscous characteristics.
The torsional viscous characteristics are not used by the present routine. The

viscous torque opposes the angular relative velocity.

The spring (and stop) torques are computed by subroutine EFUNCT

which uses the following algorithm to compute the torque T from the parameters

S1s Sps Szs Sy, and Sgs as illustrated in Figure 6.2.
If .-J6| < sg
T = sllel
If |e| > Sg» an additional torque Ts'is computed as

_ 2 3 -
Tg = 5p[0l-59)" + s5Cle]-sg)

- If 8< 0 (unloading) T, is modified by
Ts=s4Ts
:For small values of lél the routine interpolates between the

loading and unloading characteristics.

The total torque T+T_ is returned as the function value.

The coulomb and viscous torque, as illustrated in Figure 6.3, is
computed in subroutine VISCOS from the parameters Vl‘,Vz,V3 in array VISC .
The algorithm uses the following expressions:
if |6] <V

Z =V /(2-18|/v); if |8 >V, 2= |8 . (6.3)

3’ 3

‘= V1 + V2/Z
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where |w| is the magnitude of the angular .velocity. Thus V1 is the 1linear

viscous coefficient and V2 is the constant coulomb torque which is reduced to
zero quadratically as w + 0.  This .is done for the purpose of avoiding numerical

instability in the integration.'. These effects need further study.

5. (9.5.)2 3
s1e+sz(9-ss) +85(6-5g)

ENERGY
DISSIPATION

TORQUE

$10 +54 155 (8 5512+ 55 (6 5531
O 31

P

.
|
:-— JOINT STOP
|

|

Sg
© (RADIANS)

Figure 6.2 JOINT SPRING TORQUE
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JOINT TORQUE DUE TO RELATIVE ANGULAR VELOCITY AT THE JOINT

- N
A \
Va
COULOMB
TORQUE
.
[w] (RAD/SEC.)
@ IS THE RELATIVE ANGULAR VELOCITY
]

VISCOUS
- TORQUE

|| (RAD/SEC)

¢ -

Figure 6.3 JOINT TORQUE DUE TO RVELATIVE ANGULAR VELOCITY AT THE JOINT
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6.2 JOINT STOP MODEL

6.2.1 Genéral Features

Joints always have definite restrictions on.orientation which are
imposed by the internal or external geometry of the joint proper.. Two types
of restrictions are recognized. The first type; which limits the number of
degrees of freedom in the joint, can be treated by holonomic constraint rela-
tions, which are discussed elsewhere in this report. This section is'concer—.
ned with the second type of restriction, which does not limit the number of '
degrees of freedom, but which boundé the range(s) of variation of the angle(s)
which express the orlentatlon of the joint. These bounds are usually termed

joint stops (or, on occasion, JOlnt stop contours when the joint has two or

more degrees of freedom). Since the treatment of such bounds in the case of
hinge joints is covered elsewhere in this report, this section is devoted to
the discussion of such bounds in the case of joints with two or three degrees'

of freedom.

It is clear that in the most general case, the bounds on the variation
of a given orientation angle are functions of both of the remaining orienta-
tion.angles. For reasons brought out in the next subsection, 6.2.2,-:the model pre-
sented here is limited to joints for which the bounds on a given orientation
angle depend on only one of the remaining orientation angles. As will be
shown, this restriction of the model leads to a particularly simple descrip-

tion of joint stops in terms of the global-graphic representation. The gen-

eralization of the model for more general types of joint stops awaits future

development.

The next subsection also provides the groundwork for the model
formalism which is developed in the third and fourth subsections. In the

fifth subsectlon of this section the stop-torque formalism is applied to the
spherlcal coordlnate representation of the joint-stop contour.
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6.2.2 The Global-Graphic Representation

A joint connects two members which are here deéignated Segment 1 and
Segment 2. " The orientation of the joint‘ is completely prescribed by the
specification of this orientation of Segment 2 relative to Segmént 1. Figure
6.4 depicts three orthogonal unit vectors, Z'\r, ) 3’2 R 6; which are fixgd rigidly
in Segment 1, and a unit vector, 7 , which is fixed rigidly in Segment 2.

STOP CONTOUR © =8, ()

9

Figure 6.4 JOINT STOP COORDINATES

The orientation of T relative to 1 is completely determined by the spherical-
coordinate angles © and ¢ . More generally, the orientation of T can be
specified by two independent coordinates, ¥, , ¥, which are functions of & and

é.

If the joint has fwo degrees of freedom its 6rien£ation is completely
determined by the orientation of T ; further, any bounds on the orientation of .
T are functions only of u, and U, . In this case,. the bounds on the orien-
tation of T can be representéd by a single closed contour on the surface of a

unit sphere which is centered at the joint. This representation of the joint

stops is termed the global-graphic representation.
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If the joint has three degrees of freedom, its orientation is not
solely determined by the orientation of T , but requires additionally the
specification of the relative orientation of a second unit vector, § , which
is fixed rigidly in body 2 and which is »noncorlinear with T . Further, the
complete specification of the relative orientations of T and'TS' , depends upon
three coordinates UyUyY. As before, the orientation of T is still a function
only of &, “and U, . However, (depending on the joint geometry), bounds or

stops on the orientation of T can be functions of all three coordinates Uyr1Uy

us . In this case the global graphic representation of the stops on T would
consist of a family of closed contours on the unit sphere, with ¥; as the para-
meter of the family. A similar representation could be introduced for stops

on the orientation of § .

As indicated in the first subsection, the joint stop model considered

~ here is limited to joints for which the bounds on the orientation of T are

functions only of &, and ¥,. Also the model does not contain provisions for
including those bounds on the orientation of S which are distinct from bounds

on the orientation ofr.

A

In applying the model, it is important that the coordinate system 0}

3’2 33 and the unit vector T are chosen so that the reference orientation (see
Figure 6.4 ) is within the joint-stop contour. Also, it is necessary that when

contour is expressed in the form
e=0,(8) I 6.1

6,@)is a sirigle-valued function of @ . Fortunately this"condition is satis-
fied by the joints of interest. The version of the model which is presently
programmed (and which is discussed in the subsection 6.2.5) employs the repre-
sentation in (6.1) for the joiﬁt-stop contoﬁr. However, the more general
model developed in the fourth subsection is not iimited to the representation
in (6.1). It is based on the employment'of any coordinates u,,¥, which are

adeqliate for the specification of the orientation of r. For example, if the .
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X

stop contour bounded € in the range 0% 6%, one could employ

2,= T - cz

&I

— A
Up =T - e,

Or,_morergenerally,zrz ‘could be equated to fié%, and ¥, would be identified
with ?,/éz for some ranges of orientation of T , and with T,&, for other ranges
of orientation of T. This particular choice of coordinates would lead to a
more complicated representatlon of joint-stop contour than the employment of
the coordinates & and.¢ . However, the evaluation of arctangents would be

avoided, and so computer runnmg time might be reduced.

Throughout the development, the equation

Flegs wy)=0

(6.2)

is employed for the joint-stop contour. This contour represents a hard stop.
As in the oase of the hinge joint, the hard stop is replaced by a soft stop.
That iév, uo stop toro_ue is applied to the joint when the terminal point of T
is contained within the joint-Stop contour in (6.2). But when the terminal
point of T is outside the joint-stop contour in (6.2) a stop torque is applied
. to the joint.‘ This torque acts in such-a direction to tend to restore the
terminal point of T to the region inside the joint-stop contour; and the mag-
nitude of the torque increases with the extent of penetration of the terminal
_point of T into the region outside the joint-stop contour. The general
approach which is taken to obtain a stop t‘orque with the desired characteris-
tics is brought out in the remainder of this subsection. The detailed develop-

ment is given in the following subsections.

The stop torque M can be expressed as the sum of stop torques in
the direction of and perpendicular to the unit vector T . It is clear that a
stop torque in the direction T tends only to produce rotations of about the T
axis. Such rotations could not restore the terminal point of T to the region
inside the joint-stop contour hence is not applled It is clear, therefore,
that M should be perpendicular to ¥ . This perpendicularity is assumed by the

relation:
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M=1T@F (6.3)

It is convenient to visualize. F as a force applied at the terminal point of r

In actuallty, of course, the desired restoring action is obtalned by applylng :

the torque M to Segment 2 and a torque M to Segment 1.

The force F which is required to obtain restoring action is not umique.

First, it is apparent'from (3) that components of F which are parallel to T
do not contribute to M. Therefbre,'f'will be chosen perpendicular to T . In

the case of a hard stop,'F*could (conceptually, at least) have components

parallel to the joint-stop contour. 'On the basis of sjmmetry'arguments, such
components would not in general serve a useful function. Therefpre, ?;would
be chosen in a direction perpendicular to the joint-stop contour. In the

generallzatlon to a soft stop, it is logical to choose F in'a direction whlch

is close to perpendicular to that portion of the JOlnt stop contour whlch 1s

nearest to the term1na1 p01nt of . . In accord with the de51red character-
istics of the torque M the magnitude of the force F, should 1ncrease w1th
the extent of penetration of the term1na1 point of T into the reglon out51de
of the joint- stop contour. The joint-stop model has been designed so that
the force F dlsplays the characterlstlcs just discussed. The model is de—h

scribed in the follow1ng

!

The function fYZ&,a%} is defined so that

(i) Fluy>%3)=0  on the joint-stop ‘contour
(ii) The contour F(w,,%,. J=c encloses or is enclosed by the
contour f{%cz,uz)zo. (That is, these contours do not
intersect) ‘ o .
'(iii) On the contour Flxy,u%z)=6 is a 51ng1e valued functlon of ¢ .
(iv) The surface gradlent of f(u,,u,) is in the d1rect10n of the

external normal to the contour.
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Figure 6.5 depicts the geometry for the detemlnatlon of the force F.
This figure shows polar (9vs¢ ) plots of the contours of 1nterest

' Figure 6.5 JOINT STOP CONTOURS

/ - - . . .
U, ,uzl denote the coordinates of r. The force F is obtained from a differ-

ential approximation to the construction described in the next paragraph.

' . / ! :
Through the point (u,,%, ) the contour

sty =Flufy%5) 6.4)

can be constructed. Then a geodesic of the sphere (depicted- by a broken line

- in the figure) can be constructed to pass through the p01nt ( zzj ,zzz) and to
be perpendicular to the contour in (6.4) at the point. The geodesic will inter-
sect the joint-stop contour (//y,%)=0 ) at some point (], z; ). The

force F is parallel to the geodesic tangent at the point (z;» ¥} )(and in the
opposite direction to the external normal to the contour 1n (6.4) at the point
(uy, ws )). The magnitude of the force F is an 1ncrea51ng function of the

magnltude of the vector A T given by

A?’b?[uzl’u.a/) ﬂ‘z’uz) | (6.5)
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. . In the model, the force F is obtained exactly as just described with
the exception that [cczl—z(z") and u, -« are treated as differentials, and AT

and Fluy,uz)-F(uS, u,2 ) are evaluated in the differential approximation.
As a preliminary to the mathematical development of the model, an
expression .will be derived for the surface gradient in terms of the general

coordinates 2, %,. c .

6.2.3 The Surface Gradient

The surface gradient is just the operator -i@(?‘?’oV/ where Vv denotes
the usual three-dimensional"gradient operator, and & is. the normal to the sur-
face of interest. In the current application7 is eciuated toT . It is con-
venient to employ the modified surface-gradient operator given by

v%=-TFe(Fov).
B (6.6)

where T denotes the radius of the spherical surface.. In the case of the unit
4 . . . . .
sphere , r = 1. Thus, for simplicity, in the rest of this section V;f will

be termed the surface gradient of £ .-

. The fundamental property of the surface gradient which is utilized in
the model is that the vector given by
Vs f/uz ’ uz).
uy suy Uy Uy
is normal toT and to the contour

sy ws)=Fle) u;) ,
A (6.7)

at the point u,=%),%,= ¥; . As stated in the previous subsection, f(us%)/

must be chosen so that V;f evaluated at (%, ,%; ) is in the direction of the

exterior normal to the contour in (6.7).
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The surface gradient of any differentiable function V of u, ‘and U,

satisfies
dv =dr -V o (6.8)

where dv is the total differential of / anddT is the total diffefential of T .
dtis expressible as a function of %, and 7z, . Its total differential may be

_expressed
d’i-'=clla/u1fczzduz _ (6.9)
where
b .
: -E‘ = ﬂ ' (: =.1) 2

LIy (6.10)

The unitary vectors, &, , are not in general orthogonal. Thus, in accord with
the formalism for nonorthogonal curvilinear ' coordinates, reciprocal unitary
vectors 3"6‘-‘-1 2 ) are introduced. These vectors are coplanar to the vectors
&, (4':1,2) and they satisfy
i ¢ : (6.11)
‘where J‘,/ denotes the Kronecker delta.
“From (6.8),(6.9), and (6.11), it is readily congluded that
Sov ,zeav
: =a & 6.12)
VsV=2)u; *% 5u; (e

Equation (6.12) is the general eicpression, for the surface gradient of a function
V. of wu, and u, .
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6.2.4 The Mathematical Formulation

This subsection is devoted to the mathematical development of the
stop-torque model described in the second subsection. As before, u/, uz'
denote the coordinates of T , and u: » U, , denote the coordinates of the
intersection of the joint-stop contour 'with.the geodesic.depicted in Figure
(6.3). From (65). '

Ai"-i"(ux,a;/—_r Zé_,o; U;} (6.13)
As explained in subsection 6.2.Z2, AT is evaluated in the differential
approximation. From (6.9) and (6.13)
AT = @ Augt 2 8u (6.14)

where

A u(: = Zéc'l— u:- - ol
"~ (6.15).

_ ’ ’
and &; is evaluated at («,, U, ).
Since (ujz,%_ ) lies on the joint-stop contour,
Fuss Uzo) =0
or, employing (6.15) ) . oo . S 4
f(léé-duz:ué-duz)w ' (6.16)
* In the differential approximation,-' (6.16) becomes
07/[( le,ﬂ/;,/ N éf(l[(,, Z/;/) v, N ' e
T Ay Gy = P (0 617

The exterior normal at the point ( ul', u, ) of the contour

Flugrug) <Flu), uy)
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- in this form (dot 3

‘is in the direction of the surface gradient Vsf (%, Uz,') . From (6.12)

=z JF = .
Vo Flu,,u)=a d, "“"zavif (6.18)

Where &Y is evaluated at (u;,ué ).

Now, AT is the chord of the geodesic depicted in Figure 6.5. There-
fore, in the differential approximafion,A? is directed parallel to the sur-
face.gradient in (6.18). This condition and (6.17) uniquely determines Au,
and Au,. To evaluate Ay, and Auz, (6.11) is employed to reexpress (6. 14)

1 and a.2 with 6.14 to get, coefficients of ry and 3= )

AT =[ﬂd1"d14u1_7‘d2- 2, Auz] a”’
' (6.19)

—_— - — -

# Ezl'dadalfdz-dzduz] a

In the expressions for the final solution, the superscript 1 on ui ,ub

— —
is dropped so that u,,z,are the coordinates of r . The stop torque, M,

defined iﬁ the second subsection, is giveh by

M=0 if (Zél,llz) is within the joint-stop contour (6.20)

r @A otherwise

M= —A(/Ar/}

A (/AF/) denotes a suii:ably chosen non-negative, increasing function of the

magnitude /A T/ of AT, which is given by

AT = @ dur e, %2

(6.21)
The uhitary vectors c_li are defined in the previous subsection, and
dus [_-zz 5% ’:]f o » ' [dufz - d-zz/i] / (6.22)
‘zzzfzi‘edzzéfz‘."dzzfz L du,= 2 2
l‘ zJ 2 _ dzzé".zfzzz’;éfdufa]
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f= ffzzz,uz)

£ o= af/dué L =1,z
@ = & & (1 f =52

The conditions on the function fﬁzz,uz) are given in the second subsection
of this development.

In the next subsection, M is evaluated for the coordinates © and ¢ .

6.2.5 Agglication to Spherical Coordinates

In the computer program, the spherical coordinate representation
0=6,(4)
is employed for the joint-stop contour. To evaluate the stbp torque, T{\, in
the coordinates ©,® the formalism of the above subsection is applied with
’ Uy=6, Uy=@
a

N —_— 4 .
2,= 6 ) a,=9Psine

Uy )= 0-0,(8)
Here 6 denotes a unit vector in the direction of 1ncreasmge and ¢) denotes a

unit vector in the direction of increasing ¢

The evaluation of M is straightforward. The final expression. is:

tor 0= e(p), M- -A(/A%])($sine+S4])
and for 9 > &, (¢), /17=0 : _ ‘/7‘5‘;‘226"[90’}—2 '
where o 26, (é/ .
(<} d¢

/ 45/ [o-0 fof st 9/ /Széz"'e‘f (6.)?

The non-negative f1mction /4/ /A"f/} is 'comp.uted by employing the force versus
deflection subroutine in the computer progra.m As noted above, the torque

M is applied to body 2 and a torque M is applied to body 1.
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6.2.6 Stop Contour

‘The representation of the stop contour is taken from the work of Dr.

*
R.E. Herron where he uses a trigonometric polynomial of the form.
‘ N
€ (d)/: Zi cos 7 ¢{c2‘77-1* Czn 37 d))
. . 7= . ’ .

The degree of & depénds on the particular joint. Stop contours and
the corresponding numerical values for the coefficients as supplied by the
Biostereometrics Laboratory of the Texas Institute for Rehabilitation and

Research are presehted in Figures 6-6 thru 6-14,

* See equation_ll pg 40 of Reference 14,
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6.3 EULER JOINT MODEL

As a means of more accurately modéling mechanical joints used in
dummies, a joint termed an Euler joint illustrated in Figure 615 has been
defined. For purposes of discussion consider a composite joint attaching

segments 1 and 4.

Figure 6.15 EULER JOINT

. The composite joint itself is comprised of two segments'; segments 2
and 3, and 3 pin joints. . : ‘
Joint 1 connects 1 to 2, rotation about 4,

Joint 2 connects 2 to 3, rotation about ﬁz

Joint 3 connects 3 to 4, rotation about A;
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The equations of motion are:

72, X+ T Uy
7?_23’\/2.-/1 "é = Uy,
7723’\/3_/;,"/‘3‘ =lUys

)774_/\, —é = ZL.Zf

L(gu;)+ 2 02,1+ Dty = st 97

(ﬁz 2,/ T, @_D ,Ar22®.p f _Dzlf f.p Zf UZZ.D fﬁzz'z,

d{-(¢3 Wy )-%3,0 4 7, 27 123803 /5 - Dy 2, # D385 Ups~ ﬁ3 ”'Z;Z:a
(0 24)- o@D -Dly UsyDuls

with the constraint equations:

A 2 'ﬂz_zrzz = Xa# -pzirzz

Xzf.p L, =X, f_D Too
_ -z

Xy + Dy Ta5 = Xgr 25 % 45

and angular constraints: )

4-%11 =-pz—zﬁ21 =ﬁ1
-z -z
-Dz 22~ -pa ﬁaz =ﬁz

v/ 3-143 3% Dy ﬁfa ‘43
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Where /,,/4,,/,; are pin vectors parallel to permitted axis of rotation.

The £,,7,, 75 are constraint forces, and ¢,,Z, and Z3 are constraint torques

at the joints. Also T;,Z, and 73 are additional torques generated at the
joints (hnj is pin vector hj as measured in system n.)

vDefine an axis system in segment 1 where the 'g— axis is aligned with the
pin vector /# . Let 4, be the relative direction cosine matrix associated with
this system such that a vector # in the reference system will be transformed
into the local system by;,oul = /1Dy Fper - Define a reference system in
segment 2 whose 2 axis is aligned with the pin vector 4, and whose x axis is
aligned with pin vector Az . Also define a system in segment 3 whose; axis
is aligned with the pin vector éz- and whose x axis is aligned with pin vector
hg- (Note that hy-hy = cos 6, h;"h, = 0 and h,*h, = 0) Define an axis
system in segment 4 whose 2 axis is aligned with the pin/; . Let/4, be the
relative direction cosine matrix in a manner similar to that used for segment 1.

Let ¢ be the rotation of segment 2 relative to segment 1 about the /, axis.

Let & be the rotation of segment 3 relative to segment 2 about the 4, axis.

Let »» be the rotation of segment, 4 relative to segment 3 about the /4, axis.
Then ' ’

f//;fw AT ) H(8) 73 (0IHD,
v) G () 3 (0) = B DK o

here Tx(e) indicates a rotation through an angle 6 about the local x axis

and Tz(cb) indicates a rotation through an angle ¢ about the local z axis.

Also note that 73 () 7 (e)73(#/ is the standard Euler transformation relating

segment 4 to segment 1. Where ¢ is precession © is nutation and ¥ is spin.

Make the following simplifications: ‘
(1) The masses and inertias of segments 2 and 3 are negligible
M=y Py 8,20
(2) The dimensions of the joints are negligible

Ty T Ya=T355T350
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(3) No forces or torques act on segments 2 and 3 other than those

produced by constraint forces and torques, or torques generated

by the relative Euler angles at the joints themselves.

u u =0 ‘
22 - Y3 °
(“12 Y13 T °>

These assumptions reduce the model to two effective segments (1 and 4) con- '
nected by a massless joint.

77 Xz*/; = Zézz-
-1+, = o
~/5#fy =0

77y Xg= 15 = Uy,

Since

and

If we let t =1t] - T,

The reduced set of equations are:

: ﬁ/@wi/"rzz@*g’;*pz l =y 7
Dt r Dty D+ DT
Bl r Dty -0+ 7

TP )~ T4s@ Lyl ~Lpty =2y, L %

le=la =75
tz = tl -Tz +T2
t3 =ty - Ty + Ty

We may write the equations as

mzxz /Y'./i»: Uyy
yXg-Fy = Uy
/@r'z”j)"rzz@-pzé 7‘2&"- Upy
(B W) x50 Dy fi- Dyt = Uy,
Xz 7"fpz-zrzz =Xyt 2L}y _zr43

For the axes of rotation we have:

for precession

o, /71 =-D1- /711 ‘-Dz-lﬁzz,
0+ a= D hog= B,
spin ¥, ﬁa ’ﬁ_a_ 633 =ﬂ4.ﬁ43

nutation
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'For the direction cosines,

Ly =73(0) /4D
Zy=7.(8) 2,
ALY IS

Where A, and 4, are defined such that when ¢ ©=y=0, the local x, y, z
axis of each system are aligned.

Thus
@:: 600/ =/ ’Aaa ’é;;

ézz '/gx / = 532.
Expli;:itly for the /; in the inertial reference system we have
-7 /‘/;— éy
42 10 (F)- 2 D)
| /f;.z% BEG)-2H ;Zzgg,”,

‘. 03=’4‘-‘/%11100

or equivalently

The relative angular velocity is

Aw =D wy- 0w,
¢'fo056§/}= b, dw
e =/, dw

Coso pryr=rty- duw

Thus we have

It should be noted that a singular case arises when cos€=2s . For these
cases it is impossible to distinguish between p and ¥ from the rotation
matrix ( 7p@)7% 7% (8) 7}‘.@)) alone, some auxiliary information must be used.

Consider the case where all axes are free -
then

& = autyrfohyrih,
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where

"/@)ﬁ/
/5 -7 (e8)
Y= -//*(zm#/

Where £, g, h are the torques generated on the free axes.

Note that
W/ =z Sfor ( 1,2, 3
éz /72 %2 ﬁa o
hryhy = CoS 6

It should also be noted that when sin =0 the components of
angular velocity of segments 1 and 4 projected on the ﬁz@ﬁz axis must be
equal. This is a constraint in the system. ‘

Consider the case where the precession axis is locked. The constraint

torque tc must lie on an axis which is perpendicular to h, and hi. This axis is

* * -
hy = hy x hg, h;y will be a unit vector since h, - hz = 0.

z‘-—a‘ #6/, frﬁ-—c‘ yiz ﬁé

tc = ahl hl t h1 ‘

where

The constraint equation is a statement of the fact that the components

of angular velocity on the /4, axis of the adjoining segments must be equal.

That is, ) .
B o _.z. -z =.0
ﬁz‘lipz W~y W#] g
When the system is constrained we will write the equations of motion as

A
7(%”&/"1&@26*4”5 Yoy * &, /z‘.f:z‘c )
/@z )~ 1430 2, -Dpt Usy - Ty (24,)
with the constraint (I - hl*hL*') t, = (I-P) t, =0.
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RNy A

Where

Where P is a projection operator with the property APZ.=%¢

The constraint equation in acceleration form may be expressed as

A7) AP - il 2]

. *  *T * ok
}P = hl h]_ = hl hl .

4, has the angular velocity of segment 1 and /; has the angular velo-
city of segment 4. '

' Similarly if the spin axis is locked we have

&= —te—rhy- 9%,

where
*  xT
lo=ah” amd P=hs h3
*.
and hy3 = h; x hy
,  The rest of the development is the same. (4, has angular velocity of

segment 1 and /, has the angular velocity of segment 4.)

If the nutation axis is locked, then we find that

: . ’ * kT
where ) be=ah, and P = h, hy T
; * )
hy = hp

When any two of the axes are locked the unlocked axes is treated in
a manner identical to that of a pin or hinge joint. The constraint torque

must be perpendicular to the axes

/b= 0

J

and the constréint equation is derived from
. 4 -z | .
400wy - D ey )= o
e I-h b, =
SN RE YR

In this case
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locked pair pin axis projection P
g,e Ay I-hyhsT
B, ¥ 5, I-hy b7
o, ¥ A, - hoh 7

4

Fouco

When all axes are locked the constraint equation is

Dw -D

b4

and P = I, the identity matrix.
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. | Table 6.1 |
SUMMARY OF EULER JOINT RELATIONSHIPS

IND | LOCK | - P TORQUE- | CONSTRAINT EQ P("u;-0), %)=
1 Y AANE N7 vy N L P Sy
2 9{. - /)zb 4 tc'fﬁ.z‘/ma i hz*ﬁz*'AW
34V AT | Lo Fhyghy o hy his*Aw
i |ow IhhT Eifhy oy hyaw
5 | gy FahT | L-ghy . -hy hyeaw B
6 |gpe R [-é,/{ar AV -hghg-Aw
7 |deyw - I Z - )
8 |zone moae . | ~Fh-gh-lh, none
Aw = D:,__lwz - 1)1'1w1

f- f/;é ). 2"//'// ’//"7(,,)(/ - 274515)
g=g(0,6/ -
E /z(y,y) b, /ﬁ w}@b, o= (D af1}®/7 #gh1 s hy = (D, w4)®h3

i
*

“ hy =h2xh3,h2 =h2,h3 = hy; x hy

B(v) 75 () Tp0) = D DM

: ¢ I‘W.COS e :AI * (AW) > . _¢ sin: 2] = hl* . AW
e = bz (Aw) . i : T
pcose + Y = Yy (aw)} -y sin 6 = hz*.' Aw

Each of the functions f, g, h is defined as the sum of a spring torque,
a viscous and a coulomb torque as defined in Section 6.1 and illustrated in

Figures 6.2 and 6.3.
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SECTION 7
~ FORCES PRODUCED BY CONTACT .

The  present version of the program has four basic contact routines:

(1) ellipsoid with plane

(2) ellipsoid with ellipsoid

(3) ellipsoid with restraint belt
(4) ellipsoid with air bag

Each segment has an ellipsoidal contact surface defined for it.
Additional ellipsoidal and/or planar surfaces (finite rectangles) may be
associated with each segment. The vehicle may have planar or ellipsoidal
surfaces. Any combination may be used with contact routines 1 and 2. The’
restraint belt may be attached to any segment (usually the vehicle) at two
anchor points (these must be separate) and is assumed to pass around the
principal ellipsoid through a specified point associated with the segment.
Belts may be associated with any segment, but it is assumed that the belts lie
in a plane determined by the anchor points and the specified point in the

ellipsoid. The number of belts (8 maximum) is limited only by storage.

In each of the fifst three types of contact, the force is determined
by a force deflection routine which allows for energy losses (hysteresis),
permanent offset, and impulsive forces. The force deflection is associated with
each paired contact, hence it is important to specify a mutual force deflection
characteristic which allows for the specific paired contacts being considered.
For example a head ellipsoid contacting a planar dashboard should be assigﬁed
a different force defelction response than the upper torso (ellipsoid) contacting
the same planar dashboard. Proper definition of the mutual force deflection
allows the user to partially account for the deformation of the contacting

segments.

It should be noted that the contact routines which are inputted
force-deflection characteristics compute the force as a function of only one

parameter (related to the penetration distance) and apply the force at a single
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point. However, the modular structure of the program permits easy insertion of
‘more sophisticated routines in which, for example, the force might also be

made a function of penetration rate and/or the contact area.

‘The air bag_routiné is special in that the air bag is assumed to be
ellipsoidal and contacted only by surfaées (occupant segmenté or vehicle .
reaction panels) that also are ellipsoids} No contact forces are computed until
the air bag is fully inflated and the motion of the bag is then dynamically
integrated. Although several segments may contact the air bag, no provision is
made for the interaction of simultaneous contacts, i.e., the volume and the
effective area associated with a segment (or reaction panel) contact with the‘
‘bag are computed separately for each contact.* The bag pressure is determined
from the total change of bag volume, which is the sum of the volumes computed
for the separate contacts, and the forces on the bag and the contacting elements
are computed using the pressure and the effective contact areas. The computer

program currently provides storage for a maximum of five air bags.

‘A separate subroutine is used to compute the force resulting from
a specific type of contact. The general pattern for defining the forces and .

torques produced by contact is the followihg:

1. Detect contact.

2. Determine the parameter (penetratlon) for use in the force deflection
- routine.

3. Compute a normal force and friction force. _
4. Apply the total force and torque on one segment.

Apply the correspondlng reactlon force and torque to the other
segment .

The following sections develop the method used in each of the four

types of contact.

*It should be noted that simultaneous bag contacts, if too closely spaced, can
result in errors due to overlapping of volumes and areas which is not accounted
for in the computations.
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7.1

PLANE - ELLIPSOID CONTACT (SUBROUTINE PLELP)

The geometrical configuration of the plane ellipsoid contact

along with the appropriate variable definitions is presented in Figure (7.1).

The following equations refer to an ellipsoid Am.attached to segment m con-

tacting a plane F,, attached to segment n.

/f‘
t-
t -

therefore

or

At the point of maximum penetration

A T D, 0,7~ L (7.1)

2
L

is a scalar quantity
is the outward normal to the plane in m's reference systém.

is the outward normal to the plane in n's reference system.

The elhpsmd equatton is written in the form -

r,,7 An;- T, -7
WELTA,

=N tTALt

This results in

The penetration dtstance P is gwen by the followmg equation

p=t [,/,,,4- T, Jt”[ﬂ (X;Zf/\’m]f T (7.2)

where / is the dlstance of the plane from X, (see F:Lgure 7 1)

For p<«<o no penetration has occurred, and if p > 2p0

the ellipsoid has fully penetrated. In both of these cases no contact is assumed

and therefore no forces are generated. The assumption of no contact for full

penetration is a crude method of preventing an erroneous.contact when an
object comes behind a plane from the side.
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The point of force application can be specified as occurring
at any point between the point ef maximum penetration to the point of inter-

section of the vector o with the plane. This point is the center of the ellipse

formed by the plane- elhpsmd intersection.®

Then

= (2= P)Tm f/%‘};—ﬁ/;,,, >

(7.3)

defines the point of application of the force as measured from the c. g. of

the segiﬁent m. Then

'ju = Qn D Ym + Dn (_7(m - %n) (7. 4)

is the same point as measured from the c. g of segment n,

If the plane B, is bounded (i. e a finite rectangle) the pro-

jection of Y, on the plane is checked to see if it lies on the rectangle by

_ comparing
and 7-_ ' ' ‘
’ 7'
: o‘Z‘ Y=g = Bs (7.5)
'1, 2,' t3 are vectors defining the plane, t:1 is the outward normal o
to the plane. The scalar quantities &, /3,,/63) &y, oty define the

location and size of the plane.
If /32 or/ﬁa is zero or negative this check will not be made.

The magnitude of the normal force is computed by the force
deflection routine using the penetration distance and the specific material
properties. The normal force is then used to generate a friction force ex-

isting between the two contacting surfaces. Information concerning the rela-

‘tive velocity is important here, therefore the following equations are

needed, The relative velocity between the surfaces at the point of contact is

* Tf the plane is soft and the ellipsoid is “hard, a value of / =0 seems appro-
priate. If the plane is hard and the e111p501d 15 soft, a value of =1 seems
appropriate.




ELLIPSOID-

CG OF SEGM

PLANEN ..

'CG OF SEGN

INERTIAL REFERENCE

Figure 7.1 PLANE-ELLIPSOID CONTACT
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computed in m's reference as
Vo= L (Xﬁ—xﬁ)*“/maéfm—ﬂm 'Dn_lrwn@%'z/. (7.6)

The magnitude of the normal component is given by 'éTV,. .

The tangential component then is
. N _ 7- .
Vo= = (271 ) 2 (7.7)

The friction force is computed as Cf (coefficient of friction)
times the normal force. If the magnitude of the tangential velocity is less
than one unit a ramp function is applied which allows the friction force to
decrease to zero as the tangential velocity decreases to zero.

The total force is then computed as
f=| f‘ﬂoflz‘—c;‘ | éorl V"*/l“u-lv_ (7.8)

 The force -f is applied to segment n and f is applied to seg- '
ment m. The torque - 777 ® 7 is applied to segment n and 5/777@;‘ to seg-
ment m, '

7.2 . INTERSECTION OF ELLIPSOIDS (SUBROUTINE INTERS)

In the program it is necessary to recégnize the intersection
of two ellipsoids A and B. For the ellipsoid-ellipsoid contact routine
(Subroutine SEGSEG) both the exterior and interior contact (ellipsoid A is
intAerior to ellipsoid B) are cohsidered as indicated in Figure 7.2. For the
airbag routine only the exterior contact is considered. The technique used

is based on the following algorithm., -
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EXTERIOR CONTACT ‘ . INTERIOR C‘ONTA.CT

Figure 7.2 ELLIPSOID-ELLIPSOID CONTACT
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7.2.1 - Ellipsoid-Ellipsoid Algorithm

If an exterior contact is specified the ellipsoids A and B are
expanded or contracted about their centers until a single point of contact is
achieved. If contraction was necessary to establish this single point of
contact the ellipsoids are said to intersect, otherwise no intersection is

assumed.

If an iniernal contact is specified, ellipsoid A is contracted
and ellipsoid B is expanded or vice versa until a single point of contact is
achieved. If a contraction of ellipsoid A (expansion of B) was necessary to
achieve this single point of contact an intersection is assumed, otherwise no

intersection is assumed.

This algorithm is executed by subroutine INTERS. :The equa-
tions are described below. In the current version of the program a memory
knowledge is used, hence the algorithm may fail for large penetrations, This"
is provided which uses the last solution as the starting p;int for a new-
solution. Use of this prior knowledge should reduce the number of iterations

which are done to obtain a solution,

' Consider the case illustrated in Figure 7.3 of two ellipsoids

A and B which just touch at a single point.

175




The basic geometrical relationships are then
PudAx = -n
uB(x-m)=n

where n is the normal directed outward from ellipsoid B 5ﬁd

\f’/u. are scalars.

For an exterior contact 2, 4 are both positive and for an

interior contact (A is interior to B) V,/u are both negative. Hence in either

case
which yields : VAX,=—-5(X—772)
v' - (VA+B)x=Bm
(x—m)=—V/V/4f5)_1/4m -

Thus the value of the single point of contact X is determined

by the parameter VvV .,

The basic equations of the ellipsoids are

X Ax =1
Let (X-m). B(x-m)=1
, . % (v)=x.Ax
ane o (9)= (r-m)-8(x-72)

For a particular X

if 7‘:4 ﬁ// >1 ellipsoid A has been expanded, i.,e x lies outside of the ellipsoid

if 7‘:4/7/ <1 ellipsoid A has been contracted, i.e x is inside the ellipsoid
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Now define the function g(v) such that

gv) = fA (v) - fé (v) for exterior contact
and/or . o :
- — f ‘ . .
gv) f(v) 2 for interior contact

The single point of contact is then determined as the value of

where g(p) = 0.

Investigation of the equations shows that solving for the ¥
where g(¥ ) = 0 is equivalent to solving a sixth degree polynomial in v ,
Rather than solve the polynomial a Newton-Raphson procedure is used where

g(V) is expanded in a Tayler series,

y(prp/ y(z«'/fd'})__z
Since it is desired that g(pfc/’V/-’ O .then

-g)

J' =
Y= =),

This procedure is iterated until a specific degree of conver-
gence is achieved ( |JV| < & ) or until a specified number of steps have
been executed and convergence has falled in which case an error message is

printed.

. The initial value of 2 is estimated as
v . Bm L
| | 7B et )
for the exterlor contact and the negative of this for interior contact. This

produces a v of about the right order of magnitude.
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Using the expressions for fA_and fn,the following equations

result
Cd ax '
ar = 3
- dfs__, dfa,
dp ay
ax iy
fg;‘=f.[V/4 fﬂ] AX, .

dg dh _dfy.(1+3) df,

for exterior contact,

dv dv ¥ dy

and for interior contact, d_y= _Lz d_zf" _d_fﬁz » _._{L/d__jj" . ’

oy fq v dv 5y dp

1 . . . - .

The functions fA’ fB andf— are illustrated below as functions of vV,
A : .
g N

i .FA 'fB

DESIRED SOLUTION
fL=fg

f

DESIRED SOLUTION
L
F=T8

Y >0

'Y < o . ks . . .
EXTERIOR CONTACT

INTERIOR CONTACT

Figure 7.4 ELLIPSOID FUNCTIONS FOR INTERIOR AND EXTERIOR CONTACTS .
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When the solution is obtained, the expansion factor is

Ef’\I fA

If no solution is obtained after 50 iterations, the statement
"INTERS ITERATION DID NOT CONVERGE" is printed and the program

continues.,

7.2.2 Depth of Penetration for Ellipsoid-Ellipsoid Contacts

The depth of penetration for the ellipsoid-ellipsoid contact is
computed by subroutine SEGSEG by the following algorithm, using the results
of subroutine INTERS,

1. For an exterior contact where the ellipsoids have been .

contracted by an amounté, as determined by subroutine INTERS

they have’a single point of contact at the point x when contracted.
The location of the same point on A when not contracted is B

and on B is
| Xa=(X-m) /s #772
a=( )/ff
- The vector between these points is then
. i .
X,q—Xb = (5,4 I)m Co

The depth of penetration, p, is taken as the magnitude of this

vector i. e,

A
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2. For an internal contact,A has been contracted and B

expanaed. Hence,
Ao = Mt
Xg= s (d-m)rmm

Then o : ‘
XoXo=Xfe € (X-7m) =1 -(é—j -€.)x-(2-6) m

The depth of penétration is then taken as
P=lx,,—)(5l_=[( gf‘_.y)(fé,'c 6(-772)’ -

7.3 RESTRAINT BELT CONTACT

.. The CVS IV program provides two options for modeling of belt restraint
systems: (1) the original method, which is described in detail below and (2)
a new approach developed for the Air Force Aerospace Medical Research Laboratory
at Wright-Patterson Air Force Ba'se which allows modéling of interactive belts

that can slip over multiple deformable segments {References 5 and 6).

In the simpler treatment, each restraint belt is assumed to lie iﬁ
a plane defined by two anchor points attached to a Segment (usually the vehicle)
and by a fixed point on a contact ellipsoid rigidly attached to some other
segment (see Figure 7.5). The calculation of the belt length from the fixed
point to the two anchor points is done'separately. The friction of the contact
between the belt and the segment ellipéoid may be assumed to be either zero or
irfinite. In the zero friction option the total belt length is used to compute
the strain and a single force-stfaiﬁ history is used to determine the force
which is applied equally at each of the tangent points. In the infinite
friction option each of the parfial belt lengths (one from the fixed point to

.anchor point A and the other from the fixed point to anchor point. B) are treated
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CENTER OF ELLIPSE

«—————FIXED PT,

ANCHOR PTS. -

CENTER OF ELLIPSOID

INERTIAL REFERENCE

Figure 7.5 RESTRAINT BELT GEOMETRY
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Separate force-straint histories are carried for each part

"independently.
It is assumed that the force-strain functions

resulting in different forces.
are defined in such a manner as to account for deformation of the contact

ellipsoid (i.e., they are mutual force-strain functions)
The center of the ellipsoid is used as a reference for the calculation

of the tangent points and the belt length.

The following vectors-are defined:

#4,3s - location of anchor points w, r.t. the ellipsoid

73 749 - vectors from the anchor points to fixed point

/. -vector defining the belt plane

[
All quant1t1es such as these are matrices in the reference system of the segment

associated with the contact e111p501d
7; .
7y (1.9

The distance, /E , of the center of the ellipsoid to the belt plane
is computed by : :
(7.10)

An ellipse is formed by the intersection of the belt plane with

the ellipsoid. The center of the ellipse is given by:

-z
A ~
Xg —
ET Yad (7.11)

E is the ellipsoid matrix.
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7.3.1 Calculation of the Tangent Points

The belt plane is illustrated in Flgure 7.6.

Let ,,0_="cz‘9cf/d;.f7z*@f;

. ~ Since x, z, and p terminate in the belt plane, the following re-
latlonshtps hold, ¢ -,0=z,‘-x=z‘.;,

Then | | |
z ,Dhcxz‘ Zf—/dz" i’ L ields
. CZf-/d =7 R
| (7.12)
p may how be written; :
p=X 7‘/5(;/—2:/7‘7’2"@['; 7.13)

Since z-p is tangent to the ellipsoid it must be perpendtcular to the normal

at p. Applymg this yields,

(3-P) fP o -
and since p hes in the elllpSOId the elhpsoxd equatlon states that PEp =1
Therefore '
' 2 £ p=1 A
yielding - ~2-Lzrfp-Lp

(7.14)

Equations (7.12) and (7. 14) may be used to defineor andF . To determine 7"
use; 1=p-£p :

I=a*x-£x +2<x,5x- f; r2ayx-F(te f;,)
f/.a%;-f; 2 /3 r;-[{t@f;)fr"‘/z‘mf}/- (m[;)

(7.15)
But X- [(z‘@f;z) =fr-t@f3z=0= f;, [z‘@[}}'; [(é@/_"/z)
2 x[z-%-£x]

(telz) L(tetz)
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Figure 7.6 _El_.LlPSE IN BELT PLANE
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.The choice of the sign of 7 V'distinguishes between the possible
tangent vectors from the érichor points to the .ellipse. The possible belt plane
éonfigurations are illustrated in Figure 7.7. Note that if the fixed point does
not lie on the arc of contact the belts are assumed to be attached dlrectly to

the fixed point as in (d) of Figure 7.7.

Determination of the arc length b'egins' with the definition of a
right handed coordinate system uc, up, Tc as; uc is the unit vector in the direc-
tion of the fixed point c from the center of the e111pse, Tc is the vector defining

the belt plane and (p= fcauc

Let f:)([u_c/fy(u/a/f,\IE ,» be a vector from the center of
the ellipsoid to a point on the ellipse. Applying the equation of an ellipsoid
yields:

PLP=2wc-Liluc)rexyuc - £lup) ry*up-Lup
7‘)(5 . ZZE =7 A (7-..16)

then writing

‘ 2,24 2_y

- where Traoxyrey "
‘ uc-Luc ‘b_ac-/_"/zg,ﬂ}
7-Xo £X, KLy

_yp Elwp)
Z-Xp £Xp

(7.17)

The values of x and y are computed for the two tangent points. - Denote them

fas X, , ¥, then X5 5 Y8 and

efm-f/%, 4o ) s extar ) )
T o 4 g (7.18)
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(a)

Frxeps PointT

(b) _ o ‘

(c)

(d)

Solid Lines Indicate

Accepted Solutions

Figure 7.7 BELT CONFIGURATIONS
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The arc length is then computed by Simpson's Rule integration

using (a, b, c, step size and &,) as input. The Function Routine Elong per-

forms this operation. The form of the integration is found by considering the

. following equations:

Write the equation of an ellipse:

EX 2+ 202y cy*=s 3
| , ; . (7.19)
Let- : - X=rcosé, y=rsinae ‘

Then r= /\]d‘coszéf 285176 cos@ #c 5in?0
(7.20)

The arc length ds is;

: . —. ' 2
_c{3=\[dr ?f[r¢6)2= 26 lrzfé%) 7.21)

Substituting for r yields

ez, (- L2 oo rr 2(8a0)
5 "2 = v Rlarcrr Y b-gqc
7Y o #TH(b-aq)
The equation for the arc'length L is then given by: '

oo e (O

(7.22)
The sign of L will be defined to agree with the sign of &, ., '

The following assumptions and/or restrictions apply to the

derivation and use of the belt routine:

() Anchor points A and B are distinct, therefore A, B and

the fixed poini: on the ellipsoid are sufficient to define a plane.

- (2) The fixed point lies on thearc of contact from tangent

point A to tangent point B, If the fixed point does pot lie on the
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on the contact arc, the belts are run to the fixed point and the

arc lengths are set to zero.

7.4 AIR BAG CONTACT

The airbag model is based on the assumption of a stretchless V
bag of ellipsoidal shape which interacts with contact éllipsoids attached to
selected segments of the crash victim or the vehicle*, Each interaction of
a contact ellipsoid and the bag is treated separately by the geometry routine
which computes the decrease in volume of the bag, the effective area of the
contact and the force and torque per unit pressure. After all the contacts
have been considered the total decrease in volume is used to compute the
‘pressure of the gas in the bag and then the forces and torques are applied to

the various segments.

In using the airbag at least one contact ellipsoid must be attached
to the vehicle. This is called the primary reactional panel. A point is speci-
fied on this panel as the deployment point. At the beginning of the program
(time = 0) the bag is assumed to have zero volume (zero size) and is located
at the deployment pofnt of the primary reaction panel; after a specified time
delay the bag is inflated by using thebgas dynamic relations for the choked
flow of gas through a nozzle. The gas source is a high pressure tank of con-

stant volume, that the total gas which has come through the nozzle, would
| occupy at atmospheric pressure. Until this computed volume plus the volume

of the intersections from the contacts reaches the geometric volume of the bag

* The contact ellipsoids attached to the vehicle which are used by the airbag
routines are distinct from the other contact ellipsoids in the program and
are referred to as reaction panels in the program comments, The loca-
tion and orientation of these panels is arbitrary.
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(when fully.inflated)‘the'bag is assumed to be at. atmospheric pressure and
hence no forces are pfoduced. When this volume reaches the geometric volume;
the bag is said to be fully inflated and the addition of more gas from the
cylinder or an'increase in the volume of intersection will cause the preséufe
in the bag to increase and thus produce contact forces'on'any segment inter-

secting the bag.

During inflation the size of the bag is determined by scaling
the semi-axes of the ellipsoid by the cube root of the volume. The center of
the bag lies on a vector which has one end at the deployment point and is péra—
llel to the X axis of the primary reaction panel but in the minus X-direction,
and the distance is equal to the ‘semi major X axis of the sealed bag from the

deployment point.

When the bag is fully inflated it is moved dynamically. A mass
and inertia matrix is assigned to the bag. Until fully inflated the orientation
of the bag with respect to the vehicle is held constant and equal to its initial
orientation. The dynamic motion of the bag is updated by the progfam integrator.
An artificial spring force is applied at the end of.the positive X axis of the
bag and is exterior to the primary reaction panel. This was done to hold the

‘bag to the panel.

7.4.1 - - Geometry of the Airbag Dufing Inflation

‘The airbag geometry during the inflation process is illustrated

in Figuré 7.8.
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AIRBAG.
PRIMARY REACTION PANEL

DEPLOYMENT POINT

Uy AXIS OF PANEL

VEHICLE REFERENCE POINT

- Figure 7.8 AIRBAG GEOMETRY DURING INFLATION

During inflation .the following algorithm is used to compute
the center of the airbag. '

Let } location of the center of the primary reaction panel wu:h respect
to the vehicle reference :

|
jd be the location of the deployment point with respect to the center
of the panel ; :
be a unit vector in the positive X direction of the panel
o} be the scaled semi-axis (X axis of the airbag)

3 be the location of the center of the airbag with respect to the
b  vehicle origin,
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Then 2y =2+ 24~2%

The velocity of the c.g. of the bag is computed as the t1me

derivation of this expression plus the veloctty of the vehtcle.

It should be noted that in the present codmg of the program it
is tacitly assumed that the X axis of the bag is parallel to the X axis of the
primary reaction panel because the above algorithm does not consider the
orientation of the bag. This assumptlon affects only the computatlon of the
artificial spring force which is used to hold the bag to the panel. The 'sprihg
forces applied only if the end of the X axis of the bag is exterior to the panel
and is proportional to the distance of this point from the deployment point.
Hence, if the bag X axis is not parallel to the X axis of the primary panel the

only error would be in the computation of a posmble sprlng force when the bag

is moved dynamlcally.

' The scaled semi axes of the bag are computed by the followmg
a'.lgorithm.‘ Let ap -bl’ ¢ b be the semi axes of the fully lnflated bag as speCL-
fied by mput. o | '

Then the geometric volume of_ the bag‘ vis
= .(4/3) i alblcl'

Let Vb be the instantaneous volume of the be.g computed from the gas dynamic

relations.
Then .4 //3
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are the semi axes during inflation,

The components of inertia of the bag per unit mass are com-

puted from the relatlons

8. =b>+e” /5 o . E
By = (a2 + 02 15

22

. ¢zz = (a) +_bl ) /5

which are the principle corriponegts of inexjtia' for a thin ellipsoid (ellips.oidal

shell). L ' '

7.4.2 Dynamic Motion of tlhe Air bBag

When the bag is fully inflated the sum of the forces and torques
actmg on the bag are used to determine the airbag p051t10n orientation and
velocities by integration of the equatlons of motion. The bag p051t10n and
velocity is updated only at the completion of a successful main pro’grauﬁ '

integration step and is held constant during the integration step.
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7.4.3 Air Bag Contact Geometry

Figure 7.9  AIR BAG GEOMETRY

Subroyitine EDEPTH .computes the points of maximum penetration(i. e. /EJ_’DB/
is maximized) ' ' ‘ '

/z.)=/P,4-/DB/ e e (7.23)
If P is less than 10-6 no further computationé are done, zero pénetration is
assumed. ' ' o
If Pis greéter than or equal to 10-6,, two orthogonal plé..nesv aré'defined con-
taining the line from PB to PA’ using subroutine ORTHO,

i
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In each plane the ellipsoids are replaced by circles with the same radii of .

curvature as the ellipsoids.
Two cases are considered:

Case I: The radius of curvature of the airbag 'rf1 is greater than the
radius of curvature of the contacting ellipsoid Ty . Two
circles are constructed with a radius T /1‘ —1‘5//2 and
center located adistance ' T = I%-é from the centers of the

circles A and B, These circles are located such that they are

tangent to the circles r; and rg as shown in'Figure 7.10. S
The airbag is deformed to the shape described by the arc’ A
1-2-3-4-5-6-7. This arc is the same length as the arc along '

the circle A from 1-PA-7, This may be established by con- |
sidering the angle @ in the figure. We have '

fre B7 % T4 ¥ =(115) 20+
: S Tz (7.24)

The line from 2 to 6 is tangent to the circles. Points 2 and 6 !
are the same distance from the center line as are the centers

of the tangent circles.

This distance o is e .

dr'ﬁ P/Z (7.28) ;

The volume of revolution of a sector of a circle as shown in
the figure below. is - ' . -
Vo= 77’r|: cos @(1-cos ] DR
‘s /smcos 9(2-cos *gf) (7.26)

i
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.1"3

' Figure 7.10 CASE I AIR BAG CONTACT GEOMETRY -
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And the volume of a ring as below is

Ve=27ar %@—Sin';b Cos¢_]
‘ ' (7.27)

Hence the volume of the shaded area in the figure above is

V=mzx,’ Ez/a— cos g /]—6‘052¢/3)]
f7rr; [g/.a—_ cos g (7- c052¢/3)]

~27TT, ?Zsizz¢ |:¢—sz'zz¢ cosg{l '

where cos ¢ = I-Ffft,r1z)
=T, Sin g

V= /{rAfrB}(A*r ) (—13 4/_1}3
. P Y
—-Xr [”-ZSZﬂ(l-m)—Z;;(Z— 1:47‘%)]/

(7.28)

(7.29)
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Case II: The radius of curvature I, is smaller thayn Tg

O

A

© Figure 7.11 CASE Il AIR BAG CONTACT GEOMETRY

"In this case no tangent circle is constructed since the arc
leﬁgth along the bag is greater than the arc of the contacting
surface. o . N
Alpha, o« is’' computed as the distance to the point of intersec-

" tion as follows:

‘ { . . ) . Co ‘, .
A MEae -'/’).2)/2/’“4*?4.’/”) (7.30)
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The volume is

t

V=mx] [:2/3'4“05 Zy p'easz‘%/a)_-l- )

# 77.1-53 -Ez/s -cosg, (2- Coszdﬁ/i-l (7.3

Since
Cos @y =/5/r'4

. (7.32)
“and Cos g = 1~(Ptfi-1p) /x5 |

It is now possAible to write

V= 77’r; [z—_ﬁ/m)‘g/z-i[z—/d/r/;')/s/ o

# 77’1‘; (2—/Pf/5.-rﬂ)/rﬂ)z/1—/l— /,5f,d-rﬂ /13)/3) (7.33)"

After the above computations are made in each plane the volume of intersection
is computed as the average of the volumes of revolution obtained in each plane
and the area is estimated as 7 times the product of the olé (the area of our .

ellipse).

(Note: If the i)enetration is greater than the radius of curvature of the air-
bag in any plane the computations are done by replacing the radius of curva-
ture r, with the penetration /DB . This serves to limit the volume in cases
of extreme penetration where the algorithm is probably no longer valid).

The forces on the bag and on the contacting surface are assumed
to be applied at the point Z; . A friction force is computed which apposes
the tangential relative velocity of the two surfaces at this point using a friction
coefficient supplied by the user. A ramp function is used to limit the frictional

force for small relative velocities.

vy Y-
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7;4.4 . Depth of Penetration for Air BaLRodtines
(Subroutine EDEPTH)

The airbag routines whlch consider the mtersectton of elhp-
~ soid contact surfaces with an ellipsoidal airbag require the pomts of maxi-
mum penetratton. Intersection is determined by subroutine INTERS as de-
sired in Section 7.2.2. If an intersection is detected then subroutme EDEPTH
is used to compute the points of maximum penetration, The geometry of the
ellipsoid-airbag contact is illustrated in Figure 7.12.

Figure 7.12  ELLIPSOID-ELLIPSOID PENETRATION

Consider e111psolds A and B whose centers are separated by

the vector m. It is desired to find the point X on A and Yy onB such that

the distance [y-X| is a maximum and represents the maximum penetra-
tion in the region of intersection of the ellipsoids." v
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At the point of maximum penetratton. the vector y-X Wlll be

?l'ﬂned with the normals at the ellipsoids. -That'is

A Ax= y-x=-2B(y-m) (7.3 oy

where’ XAX=1 [q-aq)ﬁ(y-m)—z andV and A, are negatlve scalars.

_ Ellmtnatmg x we get

/2,17/415 +AA +Vﬁ//5/ m}a%/lm |

 (7.35).
Thus _ _ :
= AVABAA 1 B) K A
(7.36)

If y - m is known x is given by

4 *PB(y ~z) (7.37)
The scalars A and ¥ must be chosen such that :

X-Ax=1= (y-m)-B(y-m) T (7.38)

The procedure used is an iterative Newton Raphson scheme. Starting values
of A and ¥ are estimated. From these y - m and x may be evaluated.

The ellipsoid equations are considered as functions of A, and ¥ . That is

FlA, V/ X-AX-1 .- e (139)
and I(A:7)= /y—zzz/ B(y- zzz)-z a
De.terl.fnfmin'g )1,)17 suc-h.r'that: .‘ f//'L,V/=y//?,,V}=0 |

Usiﬁg a Taylor series expansion yields o et e Ty
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FIA+IA, P+IV)= f/ﬁ, v)+ —//L ——Jz) '

y(ﬂfﬂ. waﬂ) g (A, 7))»‘ J/l/ Jf Jz)

(7.40)
Thus /A and /% may be estimated from the equat;iorié _
af | |
J/Z 55 IV = -F,P)
yd‘/i.fdyd'z)?- //LV} ' -
iy ap °7 T 9ty -
= L (7.41)

ReplaceA by A +#LA and ¥ by 7#f»7 and repeat the proced{lr.e until
‘J/l

are less than some test,

2
To evaluate the partlals it is necessary to have
Q')‘ ax v é\/ a\/
QX S3v J)~ v
thferentlatlng with respect to. 7L/ y > ylelds

g-% — (VA AB FAA+ v8) " Ax
ax _dy 3y
o Tl

ax :.(7//1 BA *AA+v8)7p (y-m) |
2 o w o | (7.42)
av “ar " 50 | |
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and for f and g,

df=2x-Adx

A aA
=2k o

ap av

39 =2(y-m) B dy
an A
g = 2/y—m)-z52_g/
ap av’

(7.43)

This completes the evaluation of the necessary derivatives.,
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7.4.5 Gas Dynamics of the Inflatable Restraint System (Air bag)

The gas dyxia.mics modél for the airBag is 'cénsidei:ed in separate

parts. One part consists of the gas supply model and the other part consists

vof the gas dynamtcs of the mﬂatlng or deﬂatmg bag.

Gas Supply Model

The basic assumptions are: .
(1) Perfect Agas
(2) 'One-diménsional, quasi-steady, isentropic flow ‘

(3) The flow through the nozzle is choked for the time duration

of interest

(4) The mean velocity of the gas in the supply is small

"The mass flow per unit-area in a chokea no'z‘z-l.é' is éiveh by*
' S Lo I' 2*4-1' 1/2" v ‘
!:)=|.’37«P)0(3+7)a1..
- - (7. 44)
where w is the flow in (lbs/sec in ) _
g is the acceleration of graVLty (m/sec )
p 'is the pressure (1b/1n y -
P is the density (lb/m )
E 7 is the ratio of specific heats (~1. 4)

‘The change in density of the constant volume éuppiy cylinder is

L _ _ ®eph (7. 45)

e Vo
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where

v, is the volume of the supply (in3)
A is the area of the throat (igz)

CD' is the discharge coefficient of the nozzle (throat)

For adiabatic flow the following relation is valid

r
£=F ('f/ﬂ) o (7.46)

where £ and J are a reference pressure and density.

The ideal gas law is

P = RT = o :
7 . meT/v" (7.47)

where. T  ~ is the temperature (°Rankine)

‘R is the gas constant (in per °Rrankine)
M  is the mass (1b)

Combining equations (7. 44) thru (7.47) and integrating yields,

2/3-1 . '
F =r/Q (7. 48)
where
Po = is theinitial densityv
Q = 1+c¢ (t-l:o)

¢ = 2 (Y-l) \ﬂ?}’j‘o(azr) v e
o 2 o +
: _ ' ' (7.50)

t is the time (sec)

and where the subscript o refers to the initial values of the respective

variables.

We also have

' 2¥/7-1
P = pO/Q /

T =T/ Q? (7.51)
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Initially, the mass of air in the cylinder (m ) is .
My = Vo /o

hence the mass of air discharged into the bag Mm is given by

” Ma - Va/

Vo o (1-7/742)

M
-(7.52)

' Gas Dynamics of the Airbag

.- During inflation, the volume of the bag,,Vb, is estin"iated.byf. :

Vy = Vopor (1-7/7) (7.53)
where
v %R
e TA
fA. = atmospheric pressure (7. 54)

When the calculated value of Vb is equal-to the geometric volume

~of the fully inflated bag the gauge pressure in the bag, #¢, is computed by "

’ 7
P-# = Fa_ (fb/fo.) - PL e
_ . (7.55)
where f;  is the density of the gas in the bag when it was first fully
inflated (i. e. when its calculated volume equalled the geometric voltume at

atmospheric pressure)

Po = My/Vg
m, = mass of air in bag
Vb = volume of bag

i
- The volume Vb of the bag is the geometric volume minus the

decrease in volume due to the contacting su\\faces.‘ The mass of gas in the

v - \
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bag is the mass of the gas dischafged into the bag less the mass.of gas ex-~

hausted through the bag exhaust orifices

4

where M,, is given by equation (7.52) and M,,,, is the mass of gis exhausted. "

M, = Mc‘n _‘Maaé'

The quantity of gas exhausted is estimated from the relation '

A Mout 0 if Py, is less than a specified vent pressure
L .
L Mo = C AQ [z22 7P / : ) if p, exceeds vent pressure
—_ el [V b
dz (on s -
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7.5 , FORCE DEFLECTION MODEL

v ) In this model surface contact forces are replaced by a single
force which is applied at a specific point and in a specific direction as deter-
mined by the various clontact routines.. The magnitude of the normal force

is computed as a function of a single pérameter which for'i:he ellipsoid-plane
and ellipsoid- ellips'oid contact routines is a measure of the maximum pene-
tration. In addition a friction force is computed which is proportioned to the
normal force and is in such a direction as to oppose the tangential velocity.
The model does not allow for the addition of viscous or inertial forces except
as prov1ded by the ”lnertlal" _spike descrtbed in the following or the impulse

descrlbed in sectlon 7. 7.

In the force deflection calculation, hysteresis effects are
approximated by specification of an energy absorption factor R which may be
a functlon of the force deflection parameter " . Permanent offset may be
' spec1fled as a deflection factor G which may be a functlon of the parameter

- d . A unique force deflection characterlstlc is aSSLgned to each contract
~ hence one shouldspecify the force deflection characteristic as representative
of the mutual properﬁes of the contact involved. In specifying a mutual force "
deflection it is important to remember that the parameter J° as computed in
| the program is a geometric property of the contact surfaces whlch is computed .

as if the surfaces were not deformed durmg the impact.

Five functions are associated with each contact.- These are:

1. Base Force Deflection

2. Inertial spike

3. Energy Absorption factor (R)
4, Deflection factor (G)

5. Friction Coefficient
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In the current model these functions are assumed to be functions
of the penetration factor (force deflection parameter.) No provision is

made for variation with velocity.

Each of these functions may be subdivided, if desired, into

two separate parts fz (J) and fz(d”} where, \

fj‘_(é‘) is'defined. for 0 £ 4, £ J<4,
and . ’
£, (§) is defined for S, 2 J 2 fo

If § is greater than the last defined value th'e.fuhctio_n’ is
assumed to be a constant equal to the last defined value. Each of these
functions may be any of three functional forms; a constant, tabular data,

or a fifth degree polynomial in & .

The force deflection is constfuctéd in the followirig_ manner

using the first four functions

BASE + INERTIAL SPIKE (IF IT EXISTS)

FORCE.

RELOAD
‘—l UNLOAD

| -
$auap Srer.

_Figure 7,13 FORCE DEFLECTION CURVE
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Initial loading occurs along the base cur\'re'plus the inertial '
spike(need not be used.) "As long as continu.ous loading occurs the charac-
teristic obtained will be the base plus the inertial spike. Unloading will
proceed down an unloading curve. If unloading occurs after a specified
deflection is achieved, the inertial spike is deleted from further calculations

of the force.

. Since the prograrﬁ uses a variable .step integrator which may
reject a particular step and repeat the calculatlons for a smaller. step size
it is not possible to detect whether loading or unloading is occuring by com-
“paring the present d" with the prevtous J" .- To circumvent this problem, a
complete force deflection characteristic is defined at the beginhing of each
new mtegratlng step and is retamed unt11 a successful Lntegratton step has

been achieved.

The subroutine then redefines a new force-deflection function

depending on current value of J as follows:

. < 0, or if. d'. 02“ , return to calhng program. )
2. If 545 cvsic , unloadtng lS occurrlng, defme reloadtng cubtc

oer” Innx e
© | remove lnertlal splke from further conSLderatlon

»(a) .- -If lnertlal splke ex19ts and if f > 2

(b) Set U
cha/c ??2:221/5 jqump)
Jco ’ J;'UJ/C .
A =‘5A,”_a;,,,,c o (7. 56)

(c) Define new cublc / (S)-C ¢ #G /J C“m /J-— CU’,C) /J /c)3 .

for &, = = f,- that satlsfles the followmg condlttons

/g (a;”) = /:543[/3:1’;;) ' /é. /Jcoa/c) = /é;:oa/c)
/::- /ngf}. = /_6,055 (ofi”:r)i _ /f:/ caa/c) /: ( caa/c

(7. 57)
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by Com Lz (Fogere)
CI-‘/Z ( Jcaa/c')

and C, and C; by solving simultaneously

.
CzA /'C343= /':ust /Jltf)—co-czﬁ

2 C2A * 3C5 4%= /:B,ASA' /J/PIF)" Cz
. : ' (7._58)

(d) If local minimum of new cubic definition lies l;etween é‘w,v,c»fv- .
and ' Jdpss and is negative, then replace cubic definition
a straight line between the points [ dparcs % (Fcvsre ) ]
and [é/-fﬁf’ lonse ([ Fner) 1Y ' ' o

Co = Fe @-oa/c)
Cz = 'ﬁl‘ 'L;»sf ( J,;,”.) - /Z [ qua/c )]

C,=Cy=0
20 (7.59)
and return to calling program.
3. If az.”a/;ff —‘—J,}” , reloading is occurfing; define new quadratic un-
loading curve from cubic curve ' ' '
let Yo e (J‘o)
Ievare _ g . Jcoa/c ]
and 'ql?ft'_ /2 (j}d;f//g(}}df_/fcé)dé‘ (7.60)
Pavar . O, J"o :

and go to step number 5.

. when £ /é‘/ was defined. ),

(Npte: é&o was the value of &,
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4. Otherwise, d,,, <4 ; define new quadratic unloading curve from base

" curve.
(a) 'Ifdz (?‘MM , remove inertial spike from further consideration.:
. (b) Determme R facl:or and place into R, s,

If R= 1, use base curve for unloading by settmg A

Jc‘iwm Jt:‘oa/c = IA‘F *Zo" Q'z gz

' and return to callmg program

(c) =~ Determine G factor and place into G 457’

Fetch D, from 'anu‘t data for base function and compute

JQ(IJD =2 "GAAST [J"po)
i m: e
= > rfia J‘
yz .y 779 ¢ l[/ (7. 61)
»if the inortial spike exists.
| pREh fmé éf}afj o (7. 62)

TN

.:5.t . Using values of Y2 and AREA defmed in elther step 3 or 4 determine - .

" new quadratic unloadlng function

[3} go/'gz(d' Jamp)"g.z/J "faa.u)a (7. 63)

for Ja‘,w.éj < d"c‘,',,c | that satisfies'/.the following conditioos_where

‘. Jcaa/c = J '
/C (Jaaia) o ' ) :
alc) e
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JC(/d /c

and /z?([)dé' :/z“rfﬂ/?fA
. Jawm
by setting i
go =0 A
Q’ - 2 3 /?M,,*ﬂif/; _y
z qua/c - JGMD Jcaa/:_: —Jawm

(7.65)

If <0, ¢, 1is set to O to guarantee non-negative derivative at d=Jguar

and
g = __-l—. i __.yL__._ g .o
"2 Feyase = Fgumo Gevasc ~davar (7. 66)
If g,<0 g,= Y2 to guarantee non-negative derivative
at o ?d;aa/c Fovarc” Fyuns
7.6 IMPULSE FORCES

For the first contact it is’ necessary to account for the
sudden momentum change caused by impulsive typé forces. For perfectly
elastic impact an energy approach would be sufficient.. For impacts which
are not perfectly elastic a coefficient of restitution is generally used to"
define the force magnitude. In the literature most of the cases for which a
coefficient of restitution is defined are for si1;np1e one or two dimensional
problems. A more general treatment is given: in Reference 16, but general
three dimensional results are sparse. for the type of materials of interest in
the occupant crash environment. For this reason, the impulse capability

has been incorporated in the program in the following manner.

The program has the capability of making a step change in
the linear velocity, x, and the angular velocity,w , as a result of an im-

pulsive force.
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" The model computee accelerations from forces,. and from a
computatlonal point of view must distinguish between two types of lmpulses.
The first type is one in which the direction of the impulsive force is speci-
fied and its magnitude is unknown, such as the force at the first instant of
contact of a body segment with a vehicle surface or‘ with another body seg-

.ment.

_ The second type is one in which neither the dtrectlon nor the

" magmtude of the force is known, but a desired change'in veloc1ty is specified,
such as the case where a joint is changed from an unlocked to a locked state.

| At the instant of locking, an impulsive torque must be applied which is suffi-

cient to reduce the relatwe angular velocu:y of. the segments adJommg the

joint to zero.

For purposes of this discussion, the system equations may be

represented in the form

7= 5u-

de

(7.67)

where (is the generalized applied forces and torques
S is the system matrix o '

X is the resultant acceleratlon (linear and angular )

Integratmg from time t to t. +£ ylelds '
tré -
(éfaf)-xm j 2 |
(7.68)
‘Taking the limit as g goes to zero yields .

AX=$w - (7. 69)

Where AX is the impulsive change in velocity and

Jy is the impulse (impulsive force.)
i 1 .
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In the program the matrix S is not explicitly evaluated. It
is implicit since the program computes forces and then solves a set of
 simultaneous equatlons using a sequence of matrix block type operatlon to

obtain the a ccelerat1on.

Impulses will 6n1y be applied at the compietion of a successful
integration step before proceeding to the next step. Also, the integrator is

reset and the step size is reduced to its starting value..

Consider the two types:

TYPE I
The direction of the impulse is known, its magnitude is not
known. If more than one impulse occurs simulfaneously it will
be assumed that they are decoupled so that they can be handled
sequentially by the technique developed for one. In this case

the program steps are as follows:

1. Detect and identify the impulse to be considered.

2.  Call the approprtate contact routme to apply an impulsive
' force of the proper d1rect10n as under a normal call. This
1s the ~only force appl:.ed (all other forces and grav1ty are

e

' set to zero. )
3. Solve the system equations.

4, - Interpreting the computed acceleration as step changes -
in velocit& per unit of force,. determine the magnitude of
the force using the'coefficient of restitution. The normal
component of relative velocity after the impulse at the
point of contact will be the negative of the coefficient of
restitution times the normal component of the relative

velocity before the impulse.
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5. Scale the AX to the value determined in step 4 and add
them to the X in the program.

6. Repeat steps'2-5 for all impulses to be considered at

. this time.
7. Make normal call to DAUX and reset integrator.

8. Proceed with normal program.

It should be noted that the impuléiﬁe force is applied in a di-
rection that has a coﬁponent normal to the surface and a component tangent to the
surface. Tﬁevténgential component is determined from the pfescribed coefficient
of friction and is opposed to the direction of the relative tangential velocity.
Application of this type of impulse may or may not cause the direction of the
tangential velocity to reverse. The exact treatment of an impulsive contact
in three dimensions cbnsidering both linear and angular momentum is quite com-
plex and has not been solved (Reference 16.) It should be noted that a reversal
of relative tangential velocity is not unusual as the tennis or billiard player

is well aware.

The coefficient of restitution,as’interpreted by the program is
the ratio of the negative of the resultant normal relative veloéity_éfzgg the
imbulse.to the normal'relative'Vélocity before the impulse.  Thus a coefficient
of reStitution of one (1) will reverse the normal compohent of the relative velo-
city while a valﬁe of zero (0) will result in a zero relative velocity after im-
'pact, and a coefficient of restitution eQual minus one. (-1) will produce no change
in the relative velocity. No restriction is placed on the value of the coefficient
of restitution by the program (i}e; a value of +2 or -8 will be accepted.) In

normal usage, it is assumed that the value will be between + 1.



TYPE II

A resultant velocity change is specified, the impulse is un-
known. For example, consider the case where an unlocked joiﬁt is locked, say
the joint connecting segments i and j. Determine the impulse torque vector,
t, applied at the joint which will determine AWj and 4 w; such that‘ the

resulting velocities are equal i.e.,

WtAw =w. rdur
‘L/- A zz{j+A'u{j

(7.70)
The system equation is
' ‘ AX= 5t - Sou

' (7.71)
where . ' '

le
= Z‘} | | | |
5 .2)

[

and S is a 6* (mimber of segments)by 3 matrix then

Allf/'=fl~7/a
.=
Auy=gde.

Where Sil are the three rows of S © that correspond to the AX
representing Ay and Sjl are the three rows of S-l_ that correspond to the
_A)'( representing A w;

Ju=¢

7 .73l)

Thus
WS du=u+S
[4 ) [ J JJ“ (7.74)
Solving for du,
du=(S-5)(w-w,)
( R I (7.75)
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It is assumed that S SJ1 has an inverse. 1If it is singular,

the problem cannot be solved.

‘The remaining ax ‘may now be évalﬁated from‘eqdafion (7.71).

. The matrix S may be determined by repeated calls to the routine which solves the
systém equations, each call produces a solution vector which is a column. of S-l.
In the first call, put a unit x component of torque on segment i and a negative
unit x component of torque on segment j. The second call uses a y component and

the third a z‘compohent.

In general, in order to consider the simultaneous appllcatlon of
impulses to one or more joints, Ju is a vector of length 3*k, where k is the num-
ber of joints to be considered as impulsive. S has dimension 6* NSEG by 3*k and
must be determined. There are k sets of equation (7.74). Equation (7.75) rep-

resents the solution of a 3*k by 3*k system of equations.

This development may be modified for the case where its joint is

not completely locked in this case equation (7.70) is-replaced with the equation

P (w.;, Fow)) = p (w +sw;)d

where P is the appropriate projection operator;

" if the joint is fully locked p = I, the identity
if the joint is locked on axis h p = hh-
if the joint is free on axis h p = I-hh-

Equétions (7.71) through (7.75) are modified accbrdingly.
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APPENDIX A :
THE RIGID-BODY EQUATIONS OF MOTION

A-1 Basic Equa.tions of General Rigid' Body Motions - o e

The dynamics of a system of rigid bodies depends upon the forces of
1nteract1on of the bod1es and upon the’ s1ngle body equatmns of motion. These

basic rigid-body equations are summarized and derived in this section.

From Chasles' the’orem"'(Re_ference 11, page 124), the general motion of

_.a. rigid'bo.dy can be expressed as a translation plus a rotation. It follows that

" the complete d1fferent1a1 equatxons of mot1on of the body are composed of a
translatmnal equation and a rotatxonal equation. . The most genera.l forms of
these equatmns are obta.med when the rota.tmnal equat1ons are expressed in .
-"terms of the r1g1d -body rotatmnal 1nert1a tensor about an arb1trary point of the
body space. These’ most general formas are not necessary since the tensor of
rotational inertia about an arbitrary point is simply related to the tensor of
rotational inertia about the center of mass (c. m.) of the body. Accordingly, this
discussion is limited to the simplest forms of the equatmns of motion. These

equatmns are

S 2

e
n
oz

(A.2)

where

? = : the cent”e\r of mass (c.m. ) of - the body E /,'1-

m = the total mass of the body T
- I—-I’ =  the angular momentum (moment of 11near momentum) of
// the body: about its c.m. ' ' '

the sum of all externa.l forces apphed to the. body » VS

2}

- the sum of the moments about the body c. m. of all forces
applied to the body plus the sum of all force couples '
: (torques) apphed to the body. '



The angular momentnm'ebont the c.m. is given by
e o b.® . s

where - " : ' L e

= the tensor of rotational inertia of the ‘oody about its c. m.

= the angular velocity of the body about its c.m.

Since the tensor of inertia is symmetnc, it 18 d1agona1 when expressed

in a special coordinate system, the principal- axis system of the body ' In th1s

gystem, the diagonal element 4’,_; ' of $ is equal to the moment of 1nert1a of the

body about its "ith principal axis-' Thus, the component, HL s of 1? 1n the
‘direction of the (th pr1nc1pa.1 axis is g1ven by ' ' , '
- '4’5 WO e

" where - - e B

¢_£.= i C e
and Cu;denotes ‘the component of W in the direction of the ( th principal ax1s.

The component, (_1:131, of?m the direction of pr1nc1pa1 axis 1 of the body is
given by

(H) and (g) can be obtained by cyclic permutations 1 » 2, 2 » 3, 3 >1of the
2 3 4

subscripts in (A4)

The equations of motion in(A.l) and (A.2)are derived in the next subsection.



Derivation

Rigid Body

Figure A.1 VECTORS DEFINING A POINT IN A RIGID BODY

’ Flgure _A-il.@ 'fclebicts-_the 'éeometry of the 'positio:n 'veqters ’en:‘lp'loyed‘ in the
developments.. The poiﬁt"O is the origin of the svpace.-’-fi:'ted'.(iner't-ial) refer-
ence‘frame. Point C is a fixed point in the body wh1ch. for the present, is
arb1trary but which is later identified with the body c.m. P01nt p is any other
fixed- po1nts 1n the body. The position vector ?, which is du'ected from the point

C to the p01nt p, 'is r1g1d1y f1xed in the body

From Newton s second law of motmn, the equat1on of mot1on for the

point P may. be expressed | v
'f(?)R =f?(i’,'r’1)dv + F(r) R (A.5)

Inl\ 5) R denotes the position vector of the po1nt ) relat1ve to the or1g1n of the

space-f1xed coord1nate system and T is as def1ned above ance 2 umquely
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defines the point p (when the point C has been defined), functions which depend
s ' . > % .
on the position of p may be expressed as functions of r.

~

) > s
The function F(Z) is the volume density at the point p of external forces

Y
applied to the body. F(r) may include discrete forces by the employment of the

formalism of Dirac delta fux‘x}ctioﬁgs. The function f(?, ;l)dVI denotes the volume

density of the force exerted at the point p due to the direct action of particles in

a differential volume element d\/"l about a. point p1 with position vector r1 relative =

forces in the body.” From Newton's third law of motion

22 = gL e A

The integral in (4$)is taken over the entire body, and dV1 is to be expressed

in terms of the components of ?1 ina body-fixed reference frame.
From Figure A. 1~
R=X+7 ' (A.7)

S5 0 .

R=X+T7 H
It will be shown that = = S : N -

. ..) _)

T = Wer (A.9)

e
where () denotes the angular velocity of the body.

* In the present context, a function of ®, such as p(r) is actually a unct1on
only of the components of ¥ 'in'a body-fixed coordmate system. ° (r, ') and
.and F(?) and (D) are also functions oé time. . R T
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Let &;, ({=1,2,3) denote orthogonal unit vectoi's rigizdly fixed in the -
body and &} , (i =1,2,3) denote orthogonal unit vectors in the‘s'pacef'fiked :

reference frame. Then .

s, .
Pa)
e'- = Z Dtj éJ . - - - o - .
=1 : L (A.10)
where
i ' AJ,
D"J (€
- Since the matrix D with elements D, juis orthogonal
T

A1)

r
where D denotes the transpose of D and I denotes the identity matrix. From

(A1) the inverse of (A./d is

o ' . T
BT ] ' T e ' Lo l=1 s R R o ';J. (A.].Z) .
and so . : : s
. ; 3 )
rd= z DJLr

where rJ and r;. denote components of ? in the space-f:.xed and body-ﬁxed

systems. respect:.vely

. Equetion(A.lz)may be reexpressed :

(A.13)

where r° and P 'denote column vectors with components' rj' and rj respectively.

Slnce T is rlgldly f1xed in the body the column vector r b .is time independent.
Thus,. the time der1vat1ve of (A. 13) is : - o

As o



.14 .

r° = DDr°
Differentiating (6./4), one obtains
b+ b= 0
or
DD + (©'D) =
So iy D 1s a skew symmetrix matrix. Accordingly, there exists a psu'e.do"
" vector LO such that * ' '
~_.,."". Vo o
D= (W1 )

where ‘f denotes the identity tensor (or tensor idemfactor) and (W®I)
- ' g
denotes the matrix of the tensor w@f . Substituting (&r5)into (A-l‘)lea.dshton :

0 = (WL )

Caas)

(A 16)A .

S1nce the t1me der1vat1ve of cL is zero, the ve ctor equwalent of(‘.l6) 18
o By D> ) g
r =(we I)F SETRENTR (A.17)
or _ ' S
o
T- we?

which agrees with A.9

* It is clear from(As4)that in (AJ¢)and{A/S)the elements of (W@ I ) must be '
expressed in the space-fixed coordinate system.. By contrast, in the relation
DO = (W@I)the elements of (W® I) must be expressed in.the body-fixed

coordinate system. In the vector rela.tzons(A.Q) and (.77}, , T, and € ‘'may be

expressed m any coordinate system.

A-6
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The translational equation of motion is obtained by 1ntegrat1ng(4 5)w1th
respect to T over the entire body

ﬁ(?)ﬁdv =j ?(?,¥l)dv av + 7 _
- (A.18)

" where

fF(r)dV o
L | - (A.19)

.ev1dent1y, F is equal to the net external force apphed to the body. In(4./8),
dV is a volume element about the terminal point of 2. It is to be expressed in -

terms of the components of ? in the body-ﬁxed coord1nate system. From (A 6),
it is concluded that

//?(?,?1) avav! = o

Smce p(r) is a function only of the components ‘of £ in the body-fixed

(A.20)

: reference frame, it is to be treated as time 1ndependent in the 1ntegrand in
?the left member of\A 18) It follows tha.t

ﬁ,(g)?dvv.:‘._%fjf(r)gdv C

dt ‘ . o (A.21)

It is convement to 1dent1fy the po1nt C w1th the c. m. of the bedy. Then
(see Figure A.1) ' ' o '

IR
X =1 [pF)Rav
Xy friite

EA.zz)

where m is the total mass, given by

m= ui-’dv~
o friw

(A.23)



Employing (A./9 - A.22), (418) reduces to
m¥=F
which agrees witha;l),

The rota.tmnal equation is obtained from the volume 1ntegra1 of the o
first moment offA $)about the point C (that is, about the c.m. )

ff(}’)?@?dv fi’@f(?.?l)dv av + N | .
’ : - " (A.24)

where

. ,
N = (ReR@)av

\

Interchanging the dummy variables ¥ and rl in the double mtegral in

(A.29)it is concluded that R S

S[?e ?(:?,?1) d'_yr_dv = f f"‘@ f(?l, 3 )dVdV

It follows from this relation and(A.6)that

. :

f?@?('r’,'}l)dVdv | lff[?'@f(r,r 2 Qf(?l F)davav

1”‘ [z-24 @?(?,?l)dVdvl
E :

'Now, it is assumed that the internal forces in the body are central forces.
Therefore -f(?,?l) is parallel to a vector directed from the point p1 to the point

p, that is, parallel to ( -?1). From the foregoing relation

jf? @ (7, "l)dVdvl =0
| (A.25)
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Since the vector ¥ is directed from the body c.m. to the point p, the’
total angular momentum (moment of linear- momentum), -H,  about the c.m. is

g1ven by

fy(r) r@?dv

(A.26)
Equa.t1on (A Zéhnay be reexpressed

f; P(rl:rz,r3) [rl 1+r +r e3] @?dr drzdr3 . |
R CAL27)

‘where r; and &, are as‘défined above. Since (A.9)is'va1id for arbitrary Body-

fixed vectors it follows that

- ? \
A _ A .
e = WQeL

Employing this relation, one obtains for the time derivative of (A.27)

i =/y(§’) SeheRav +ﬁ(¥)r®?dv - -

(A.28)
Froma.a)andm.9) S e
Sr (B@?)e?dv =/p(¥>(3@?)@(3@?1';‘?)AV. -
=[3®ﬁ(¥>?dv]é X=0 N ST \
The vanishing lof this term is a consequence of the relations |
._/J‘g(z)?dv -0 /

- which follows from(4.22),(A. 23) and(A.7- Employihg(A.z5),(A.27) and (A.24), (A.28)

reduces to ‘ o

(A.29) - L



which agrees with(A2).
Substituting(A 8) into (A2e)and employing(}.9) r'esAul-tsv in’
-
H

=ff(?)?@ Xav +ff(;-’)i-’q (dx Nav

which reduces, by virtue of(A.29)and the triple cross pro&uct expansion, to -

where o (A._SO).
45;]}(?)[?.?‘1’ ¥ av D
A | ' | | T (A.31)

Equation (A.31) is the fundamental defining relation for the tensor of rotational. |

inertia about the c.m. It is apparent that ¢ is symmetric. .
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A.ZL“‘ COMPARISON OF LAGRANGIAN AND NEWTONIAN TECHNIQUES FOR DERIVING
" EQUATIONS OF MOTION

. Thls sectlon is. 1nc1uded for completeness so that one skilled in the
c1a551ca1 treatment of r1g1d body dynamlcs may fully understand the technlques
‘used in, the Calspan model and reallze that the resultant equatlons of motlon )
are equlvalent. Understandlng of_th1s section is not essential for use of the

program.?
A.Ztl " Methods

The classical treatments of holonomic constraints in rigid-body dy-"

namics include the Newtonian method, the Lagrange method, and what may be termed

the independent-coordinate method. The treatment employed in the Calspan 3D

Crash-Simulation Model differs from each of the classical methods. It is similar
- to the Newtonian method:in that constraint forces are explicitly:contained in the
equations of motion without the employment of Lagrange multipliers. - - However, in
contrast to the classical Newtonlan method (1n which "explicit expre551ons invol- -
ving -the constraint forces are obtained by force-diagram ana1y51s),»the Calspan
Model,employs constraint relations of the type employed in the Laérange method.
In lieu of the employment of Lagrange multipliers, these constraint ielations'

are supplemented by additional relations, called compatibility relations, which

. are inforced from Newton's third law and/or analeis‘oflcenstraint-force geometry.

Since the method employed'in the Calspan Model does mnot appear to be
documented in the published literature, the obJectlve of this section is to show
that thls method is equlvalent to the Lagrange method. . The first step toward

this objective is the proof in the next subsection, that Lagrange type constraint

* The c1a531ca1 methods do not apply to the slldlng constralnt as indicated in
Reference 11, page 15,
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terms can be included in the Euler equations of motion. This proof is desi:abie

since the equations .of motion employed in the Calspan Model are of the Euler

type.

In the subsection titled Equivalence Relations, the équivalence of

the Calspan method to the Lagrange method is formally demonstrated, and it is
shown that the compatibility relations which are employed in the Calspan formal-
ism can be inferred from the relations connecting the Lagrange multipliers and |
the constraint forces and torques. Finally, in the subsection titled Exggﬁles;
the equivalence of the Calspan method to the Lagrange method is demonstrated for

a few simple joints.

A.2.2 Equations of Motion

S ; S

The basis for the proof of equivalence given in.the next subsection is
‘the vector form of the Euler equations of motion containing Lagrange-multiplier-
type constraint terms. These equations are first stated and-then‘derived.

For.L rigid bodies and M vector-constraint relations, the'equationslf

of motion are: ' ‘ SRR . v

Me X 7= X 4 Fe | - S (A32)
j_‘: /,.-oL ’
H = )7 75, +N, - : (A.33)
L — n L g A.34
5 [“fn-w“wfn-? }*"’"”" o
£=1 Mty M
(A.35)

- —> L
‘F’;‘L - 2771 ¢ Bm

m:,"..’ M
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" where

TR T

‘ (A.36)
e . = ;W +Z' Z'U" td_ﬁ.d"_/‘.¢. v
?. / j 'iﬂ] ﬁ-[' . ? t._. ¢ (A.37)

definitions.follow:

My
¢t

Fy
Ny

C g
fin
A
.*yn

R

R

-mass of 1th body
moment of inertia of 1lth body about its ith principal axis
net external force acting on 1th body

net external torque acting on 1th body, about c.m, of lth body

st

onstralnt force actlng on lth body due to mth constralnt

constralnt torque acting on 1th bodyvdue to mth constralnt'
angular momentum of 1th body about 1ts c.m.

p051t10n vector of e m. of lth body relatlve to or1g1n of laboratory .

. coordinate system

RN
. ?

@’
.Am
8}

4 Zi"

~,

a0
e.

Y
Y

LJ'K

'angular veloc1ty of lth body about 1ts c m.

A

tensor coefficient of aJI

P

~'in mth constralnt.relation’

tensor coeff1c1ent of in mth constralnt relatlon

PR S

coordlnate der1vat1ve 1ndependent add1t1ve vector in mth constralnt,

relation
unlt vector in d1rect10n of Jth pr1nc1pa1 axis of lth body

unit yector in direction of jth axis of laboratory coordinate system

alternatlng symbol equal to:
0 if. any two of the jindices i,j,k are equal
1 Jif ijk is an even permutatlon of 123
-1 if ijk is an odd permutation of 123
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of ith principal axis of body

17" vector Lagrange multiplier for mth constraint

— A
)Vnk N *. e: = "Lagrange multiplier corresponding to kth component
equation of mth vector constralnt relation
{ - .
X; jth component of x! in laboratory coordinate system .
£ o —f .. . s
Qe é,; . A,‘f, ‘€; coefficient of w'e in kth component equation of mth -
J vector constraint relation : - -
A - .
‘#nk €. * Dwn additive constant in kth component equatlon of mth vector

constraint relation

. T P
6,,, K e,‘ . 6’,5 . eJ. coefficient of X: in kth component equation of mth -
vector constraint relation ;

The equations of motion have been displayed in the vector form because -

the constraint relations employed in the Calspan Model are inferred in vector form;

and are more compact in the vector notation. Even more 1mportant the vector
forms allow flex1b111ty in ch0051ng optimal component representatlons. Component
equations corresponding to the vector equations- are derlved in"the follow1ng dls-_

cussion.

- Lagrange-multiplier-type constraint terms arise most naturaliy fromAtm
the inclusion of constraint relations in Hamilton's Principle.; However, the
Euler equations of motion cannot be obtained directly by the appllcatlon of Ham-
ilton's Principle to a Lagrangian 'which is identified with the kinetic energy of

the system.

One way in which this difficulty can be circumvented is to obtain the’
Euler equations including Lagrange-type constraint terms by direct transformationf'
of the Lagrange equations of motion in terms of the Euler angles., This approach"

is employed here.

A-14
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The starting point of the development is Lagrange's equations in;
cluding generalized forces and holonomic constraints. These are (Ref. 11,

page 42)

dt- Jgp - Tep G DA T (A.38)
) : e 7@:—./,-_"7” :
-2 a 2y +Qy 20 dsf,.-e,m
where the ﬁk are'generalized coordinates,'the @k are generalized forces,
Equations (A. 39)are the constraint relations, and -the - 'Kx are Lagrange multi-
p11ers In this formulation applled forces and constraints are included in

the right side of (A.38) so the Lagrangian is given by

Z(gys ?Nf?.m"'?'N)=T(?/!"'??Al’;/""?;ﬂ)
. ' S (A.40)
“where T'denbtes:the‘total'kinetic energy of the-system expression in terms of
.tné generalized coprdinates 8j and eoordinate deriratives'gy
.. The first step in the development is to partlcularlze the relatlons

1n(A 38)and (A.39) to L rigid bodies with M holonomic constraints, and to the
 coordinates of interest. . The coordlnates for the 1th body are the rectangular
coordinates, Xf » .of the body c.m. in the laboratory frame, and the Euler angles
69 ¢9 (pf - defined on page 107 of Reference 11. As indicated by Goldstein,
these coordinates are suitable for the. Lagrangian forma11sm For the sake of

compactness of notation it proves convenient to employ the symbols 692 defined by
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. 5}3 = 'e.l
) )
6, = ¢ ‘
-2 B ~ o g
8 =3t ) R (.41

The Lagrange equations for the system may be expressed in accord
with (A.38) and (A.39) as ’ o

d g2 oL _ s - 2 .
T sif T g L mbm RO o

t ¢ = , (A.42)

) ;z/,-...,s;j./’...,k o
: . . M .
It 557 _g % Gy + NS T
2 (A3

. ~L = L L -
%-::r Zz:‘=/ { Omy O * bom; A1 } todm=0 o

B . ) m:/,---,\M‘, o (A.44),'

In A.42 and A.43, Fi'e and ﬁi“

denote the generalized forces. The holonomic
constraints are expressed in A.44. ' o R

The kinetic energy of the system is given by -

fae, an2 2] R
{‘fz’ (Ui ) +. M,¢ (X“ ) } oL
" L , (A.45)
where the symbols +f > My and wif are defined in the context of quuatioh o
A.37. From Reference 11, page 134, and the symbol definitions in'A.41, '

L =L P A 2L Py 4
&, = e,A cos 64 + 8 Sth 6, sin 63
2 2 — =L - — 2
W, = -8, sn&; + &, sinm e," cos 8, |
P - _ 2 - (A.46)
Wy = 8, cos 6, + 63 .



In order to obtain the Lagrangian of ’equat‘ions A .42 and 4.43, it is only necessary
to substitute for the w f in A.45, employing A.46. It has been verified that this
procedure yields the correct Lagrangi.an.‘ The - substitutio.n;i_s.not ’neceSSary_for the

purposes of this development.

- . . 2
T N s -t - -

Einploying the translation terms of A.45 equations 'A.42'.become

Ty X S £ A0 =
Mg %7 = 2 Aom bmg t.ep - Fu .
. m={

[_/’...3 j__/’... L (A 47)

]

where é} and ‘F, . are- defined in the context of -A. 32.

\

S e (AR - - L I - PP R . o
t4 .7 < .The .next step -in the development is the reexpression of ‘A.43 in the
Newtonian form with Lagrange-type constraint terms. From page 52 of Ref. 11,
the generalized force Q corresponding to an angle variable qJ such that dq
corresponds to an 1nf1n1te51ma1 rotatlon about an ax1s with dlrectlon A 15 given
by . . :
e s
LSS SO (A 48)

‘where N denotes ‘the applled torque about the or1g1n pomt from wh1ch a. is measured.'
From page 107 of Ref. 11, d¢ .is an infinitesimal rotation about a space-_fiked
axis z, d® is an infinitesimal'rotation about the line.of ]vnodes, and»é’gu ie an
1nf1n1te51mal rotation about the body axz.s z'. So letting (in accord with the sym-

bolism of A, 41) : . o SRR f

éf unit vector in direction of line of nodes :for lt‘}i bo"dy )

e' unit vector: 1n direction of space- flxed ax1s pA for 1th body

él unlt vector in direction of body axis z' for lth body
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" it _follows from A.48 that, in A.43

~ : - (A.49)
where Ng - is defined in the context of A, 33 Ry g

As indicated on Pagé 52 of Ref. 11, for an éngle.variable qj,of the type
under consideration, o ‘ : : T e e
IT
J?f.

. (A.50)
where T denotes the kinetic energy and L denotes the body angular momentum- .- . .
- about the origin point for measurement of_qj. Since in -this devélopﬁent»T ex-
pressed in terms of the qj and.qj is the same as the Lagrangian, it is concluded .. - .
that - - ' o ' S

Q’..
o
]

= L T L

= & . H -

de;t ‘i , S
: (A.51)

where HY = denotes the angular momentum of the 1th body about its com.

The forms of the left member and the last term on the'right'in~A143.-
are independent: of the constraint terms. It follows that, in-the absence of;d'

constraints,

49X _ 8X._ e o

dt de ¢ dg*t { o
B - (A.52)

or employing A.49 and A.51, ) _
R ;z é’ ;;L “ a&:¢ = 2;1 27 : <f.-

- - = v, .

dt 4 391. 14 (A.53)
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Tan

But, in the absence of constraints,

dHE N
( oy <
and so, _ .
AL LA £ -
S TG M
) (A.54)
The rela_tipns in A.SS, A.54, and A.51 imply that
IZ 34 g o S
] ol . 4 : . &
S (A.55)
and N
— -2
- X _ < _ 21 . aH
<t 767 Z 7 ot
# .?éz. (A.56)

The relations A.51, A.55 and A.56 have been verified by direct evaluations in-
volving the Euler angles and the relations in A.46. This verification is a.

useful check on:the-correctness:of »1the"deVelopment R

Employing A.49 and A.56, A.43 may be feexpressed,"

_, me M —y -
2:,_3:{7”_ = %7 zw,i,f,é"- 2}4‘, Az |
. /_(‘=/’“.v,3-3 L=l L ‘(A757).
The relations in A.57 and A.44 will be.transformed to obtain
£ ant o | '
A . ‘ .
T -,é,‘. Pt a’:(;’ 7 %‘z’_-’\:’; T (Alse)
. i =1,2,3; £=7, Y



(A'sg)
where E?fdenotes a unit vector in the d1rect10n of the Jth principal axls
of the lth body. '

To simplify the symbolism durlng transformation the superscr1pt 1 w111
be dropped and restored later in the development. Equatlons A, 57 and A, 44 '

become - oM |
~ A _ > —
“x Lz 2= Aot Bt T %" N
| | (A60) |
Lola_. 6+ by Zledm=0 . -
£=1 { e e ’} S (A.61)

where in A.61 the sum ovef 1 has been suppressed. L t. Lo : 3
The transformations of A.60 and A.61 depend”upon the»transformatibns

(8) ~* (w L o |

(2) (%) (A.62) -

(5) =~ (%

dropping the superscript 1 in A.46 and emploYing_A.41 one obtainé the trah${3

(A.63)
formation

VA
Y,

8.
7 7

(A.64)
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where
! -‘ca&_‘;&'-\?z'?re St ¥ -

-8 ¥ - S8 cosy -

o - 0osS & . . ’
' (A.65)
The transfo.ﬁﬁ matrix C is nonorthogonal. '. The inverse of A.64 is
= -/
;77 o
: : . (A.66)
‘where . o
cc™'=1
(A.67)
and I denotes the identity matrix. The inverse C-1 is given by
. cos ¥ -7 Y
A sn¥  cosy
R - sno
w.7X 3 cos 8 cos ’
_cos 8 SnY _ S ¥ (A.68)

Ssin & Stz &

It w111 ‘be observed .that c -1 1s singular when 8 1s an 1ntegral multlple of 7 .,

ThlS pomt is dlscussed below. '

.. To. obtaln the un1t-vector transformatlon in (A 63), it 1s observed

that the angular veloc1ty, 5 s is given by the relatlon
e N ,‘

_ {:3 = E _ck'.wk B

and’ by the relation, : :

t
St



The latter expression is valid since independent angular.Velocities-
add like vectors.* Stated alternately, infinitesimal rotations can be repre-
sented by vectors, and independent infinitesimal rotations so represented can-
be added like vectors whether or not the rotations occur about orthogonal axes. .
Equating the two expre551ons for @ yields:

A
- %;, ez wy = EL e;. ?.
Substituting from A.64 and observing that the resulting relation must be valid

for arbitrary values of &, ', one obtains -

‘?“Z' Zy &,
7 kLT ' (A.69)
where ¢ denotes the transpose of C. Since S ey
~ - o=t ’ ’ '
() =)
. the inverse of A.69 is given by o
A )
=2 & -
7 7 7 (A.70)

Now, it can be shown that the singularity of ¢l at - @ =0 occurs

because** - : o - oo

3 - R
2 6=9

o

. (A 71) |
This degeneracy m1ght cause d1ff1cu1ty in numerical 1ntegrat1on ‘of A60 in. some o
isolated cases.*** Such potential d1ff1culty is not of concern in this develop-

* Rigorously speaking, angular velocity is a psuedo vector. The distinetion
‘between pseudo vector and vector is not significant in .this- development

ok Since the singularity of C—1 at 8+=ny is similar to that at @ =0 we/ need
consider only the latter singularity point. : ;

***  The degeneracy at @ =0 must also be present in the corresponding Lagfange,
form of the Euler-angle-dependent equations from which A.60 was derived.
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ment since the objective is the analytic derivation of the equations in A.58

‘and A.59, which are not affected by the degeneracy in A.71.

To treat the eingulerity' of C-1 at 6 =0 in the trans;fvormation 1n A.70
1t is only necessary to perform the transformation for & =46 and then, in the
result, pass to the limit as 4@ — 0. . It is clear from A.70 that the limit
exists and is well behaved. . Consider the treatment of the _singularity when
and C-1 are. functions of time, 'tf.- Suppose @(t) = O"at' t=t. In'tv:h'i“s“case, one
can .employ A.70 to evaluate é\k at time t and then pass to the 'limit\ as t= =-t, |
to obtain é‘k at' time t, . If C-:l is a function of t but K =0 always, one -
can again evaluate e for ©=46 and then pass to the limit as’ AQ-»O . The
singularity at & =0 in the transformation in A.67 can be handled by the same )
technique. W1th this understandlng, the groundwork is complete for the trans- :"'”?.» )
formations of A.60 and A.61l. '

Multiplying A.60 by CI(:;

— M.S
- FY, &4 P o4, Lcela

and summing over k yields

(A.72)
L ST S k. A5 4 -
Putting S S . ST
and employlng A. 70 A 72 reduces to ' ' : ’
2 - 5—-2 /+§.-N S
The inverse of A.73.is
Some JE 67,'4 a’»t/ C L ATs)



Substituting (A.75) into (A.61) yields

3 . :
2L {8 Z,c + b 2N+ d =0
7=7 ¢ 4=1 7¢ J e ¢ o
Rearranging and employing (A.64) leads to the desired result
N 3 . P ) " N »'V
25 W+ k. X ~d, =0
j=! Cmy 44 N ,é51¥~ d o
A - (A 76)

Restonng the superscrlpt 1 in (,A 74) and (A.76), and the sum over 1 in. (A.76)
leads to the equations of motion in (A.58) and (A.59).

It has been shown that under the transformation .

A A
< =5 Qf %
£ z- L _2 .
&, , . = . a L
fae 74 4 Ay ok L (A.77)

where Cij is given by (A.46), the equations of motion in (A.57) and (A.44)
imply the equations of motion in (A.58) and (A.59). Since it has been shown
that, subject to the proper treatmenf’of the singularity of C-l, the inverse
of the transformation in (A.77) exists, it is apparent that the equations of -
motion in (A.58) and (A.59) imply the equatlons of motion in (A.57) and (A. 44),

Thus the equations (A.58) and (A.59) are completely equ1va1ent to the equat1ons

(A.57) and (A.44), and accordingly, to the Lagrange equatlons in (A.44) and
(A.43). It is readily verified that equations (A.47), (A.58), and (A.59) are
identical, except for notation, to the component equations corresponding to the
vector equafions (A.32)-(A.36). |

The final step of the development is to express the left number of
(A.58) in the Euler form Put

. ey
= -452. £

or )
N _ (A.78)
PR P .
;’ é Vd



Differentiating (A.78) with respect to t leads to

oSt J Jd }p 7
. o +'§' SO
now . -4 o , ' o
£t - Jte &t
2
or . o
AL P Y Y -
e = W e J & _
The cross product may be expressed : :
product may be exp o 8te Did b
2N A A A
where d&ji is the alternating symbol defined above. * “Thus
L 2
" =72,k 4., Wt
7 k /z % Z
_ (A.80)
Since éf-é%g= g&j ~ (A.80) and.(A.?Q)'lead to the relation
A ' £
' 2 o g _'= ¢ L-f- Zl Z: é'l J,é;¢z : )
~d o JJ z=/ A‘/ Z d T (A.81)

.whlch is 1dent1cal to equatlon (A. 37) The‘devélopmeﬁt'bf?tﬁéFrelétibns

(A.32)- (A 37) is complete

The pr1nc1pa1 axis dlrectlons have been labelled so that e '® é‘= &
This labelllng is ‘in accord w1th (A 46) ‘ . G
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A2.3 Equivalence Relations -

As'mentioned above, the purpose of this subsection is the formal demon-
stration of the equivalence of the Lagrange treatment of constraints to the tfeat-
ment employed in the Calspan Crash-Simulation Model. No attempt is made here to
independently derive the equations employed in the Calspan Model. Rather, thése
equations are inferred analytically from the Euler equationS'with-Lagrange-type

constraints, and then the equivalence of the two methods is proved.

The proof of equivalence hinges on the relations

-y p
{m = A, 3B,
(A.82)
7 = A A =/, ... M '
i - g (A.83)
A e W T . = .
f?; { i B - % } + D=0 _ " (A.84)

7)1: 7 ooy M

which are the same as the relatlons (A.35), (A 36), (A 34) of the prev:ous
subsection. Following a discussion of the characterlstlcs of the vector Lagrange

multipliers, it is shown that the relations (A,82)- (A 84) imply the compat1b111ty,

relations, which can be employed to convert the equations of motion from the
Lagrange-multiplier form to the constraint-force from employed in the Calspan
Model. ' ’ V o

The constraint relations: (see (A.84)) are expressed in the vector form
since this is the form employed in the Calspén Model. Howevef, the formalism '
is immediately appllcable to scalar constraint equations (such as the torque-
type constraint relation for the universal 301nt - see the subsection’ Exggples )

To see how this is done, suppose the mth constraint relation is scalar. One
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can then put

_ . 4mz= d"_‘b"" " ,
- . L A., o, 2 A . |
. AT @ . = 6 = 5‘3.::0 Co =/"-'93 oo o
Ly Ty e A va . (A.85)
and equatlons (A 82), (A 83), and (A 84) ‘reduce to o ‘
-l o T
A= A, b3 Aw - ‘
” Fa4 7 J
‘ J >
Ny TR : Vi
n-nr»z- zm/ E al/v' %,
: 7= 7"; ' . o .
. ’ o “..-e ’ ‘A.8 .
5 Z._L Wk s 5f,, 2. + d =0 | ( 6) E
J-/ L=/ wfﬂ; 7 - v ml

When, for a partlcular value of m, the relatlons (A.85) are employed w1th
(A. 82), (A 83), and (A 84), ‘the solutions for }. and A are totally am-
biguous. These ambiguities do not affect the solutlons for };fl Qna and

other physical quantities of interest.

There are other cases in which certain ones of the Lagrange multi-
-p11ers cannot be uniquely determlned A case in’ p01nt is the vector Lagrange
mult1p11er which corresponds to the torque-type constraint for the hlnge joint
.(see the subsection: Ex amples). The lack of uniqueness of the. vector Lagrange
4mu1t1p11ers correspondlng to some vector constraint relations is probably due
‘to the presence of redundant information in these relations. The removal of °
such redundanc1es, while unnecessary, would probably usually be desirable in .

applications based on'the employment of Lagrange multipliers.*. By contrast,

in the formulatlon employed in the Calspan Model, the removal of such redun-
danc1es 1n the constralnt relations is sometimes both unnecessary and undesirable.
fThere 1s a twofold Teason for this circumstance. Flrst, 1n the Calspan formu-

'1at10n, the d1rect removal of- redundanc1es in the constralnt relations would

* The removal of redundancies in the constraint relations is not absolutely
essential because ambiguities in values of the Lagrange multipliers do not
result in ambiguities in the solution for physical quantities of interest.
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sometimes result in added complexity in the formulation. Second, in this
formulation, the constraint relations are supplemented by additional relations
(the compatibility relations) which usually prevent the ambiguities in ;;f

and £  which, in the Calspan formulation, would otherwise result from -

M
redundancies in the constraint relations.* Ambiguities in the values of the
Lagrange multlpllers have no effect whatever on the solution since the Lagrange

multipliers are not employed in the Calspan formulat1on.

The foregoing discussion provides essential background information
for the ensuing discussion on the relation between the Lagrange-multiplier
dependent formulation and the formulation employed in the Calspan Model. In
partlcular, in eliminating the Lagrange mu1t1p11ers from the equations of
motion, it cannot be assumed that the transform relations in (A 82) and (A. 83)
can be inverted to obtain unamblguous expre551ons for the vector Lagrange muIt1-
pllers in terms of the quantities nm ,# Am and tﬁf . To determine how the
Lagrange multipliers can be eliminated from the formulation, it is necessary to

achleve an understandlng of their ultimate role in the equat1ons of mot1on.**

* Some types of redundanc1es (such as those resu1t1ng from the inadvertent
employment of two distinct yet mathematlcally equivalent constraint re-
lations) could not be offset by the compat1b111ty relations. Such redun--
dancies could result in ambiguities in the solutions for individual constraint-
force and/or constraint-torque terms, but they could not affect the solutions
for either the coordinate variables or the net constraint forces and torques.

** The content of the preceding two paragraphs can be better uhderstood'in ;
retrospect, after reviewing ‘the entire development of this section. ..
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It will be recognlzed that the vector Lagrange mu1t1p11ers, ' ‘xm R
have no physical 51gn1f1cance,* ‘and further, in the entire formulatlon, they
only appear in the relations in (A.82) and (A.83). Therefore, from the physical
and mathematicallst—andpoint, the only value of the Lagrange multipliers lies in

what \thei'z"existerice in the relations (A.82) and (A.83) implies about the rela-

I

tionships between the quant1t1es F‘q s }';',,, > and A,,, Accordingly, 1t 1s

clear that the relatlons in (A 82) and (A 83) can be replaced by any other re-

latlons which are equlvalent to (A 82) and (A 83) with regard to implications
about the relationships between the quantltles F,',;( R ':;f R Bﬂf and ,4,;,( and which

'imply n_othing whatever except these relationships.

~ For reasons dJscussed below, the relations between the quant1t1es
) F,_'.,p ‘ﬁ,,“,’ s 5”( and A,,., whlch are 1mp11ed by (A. 82) and (A 83) are called

) compatlblllty relations. . As stated above, in the formulat1on employed in the

Calspan Model, the Lagrange multipliers (and, therefore, the relations (A.82)
and (A.83) are replaced by the compatibility relations. In this development,
the nature of these relations will be inferred from the theory of equations.
_Two lemmas will be introduced, the first of which is:

4

_The eduations' '
- T > 4 —» L
,5,& ,;{'”r' B,ﬁ' -
! by T : . ?ﬂ:/’”,M
oL T L2 - U
g N (AR ;{m ﬂ”, - P =7, L N (A.87)

* Those instances in which one or more of the vector Lagrange multipliers are

equal to constraint forces.or torques.are exceptions to this- statement.
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- ., =L
have at least one solution for the Am if and only if ‘%ﬁ and fm satisfy

the compatibility relations.

'..1 .y | ‘ '.
Z (l { VAR ';/}=o (57ynny N=Z

Dot mel m e » _ '
| (A.88)
= ¢ - . R w4 ra g | ..
Where GX and C,, are determinable functions of A, and &, (£=/..2;m'=t. m),

I is equal to the rank of the matrix of the N component equatlons correspondlng-
to (A.87), and S C

N=6LM | L (AL89) -
Except for the symbolism, this lemma is identical to a mathématiéai

criterion which is proved in Reference 12, page 245. The compatibility relations
in (A.88) are, except for notation, identical, to the conditions of'compatibility

stated in the reference. They are called’ cond1t10ns of compat1b111ty 51nce, 1f
they are not satisfied, the system of equations 1n (A.88) has no solution or'is

incompatible. It is in keeping with the employment of ;he term compatibility in

Reference 1, that the relations in (A.88) are termed compatibility relations.

—

The coefficients Ga;and &Z;in the compatibility relations can be.’
evaluated from the determinant equations given on page 245 of Ref-
erence 11. However, in the examples given in the last subsection of this section,
the compatibility relations are quickly obtained by analyses (or mathematical
inferences) employing relations of the type in (A.87). As stated in thelsub-
section Methods, the compatibility relations can be inferred directly from
applications of Newton's third law and/or analyses of the constraint-force geo-
metry. Prior to the analysis‘presented here they were always obtained by the

latter means.

Though vector notation is employed in expressing the coefficients
- )
Gy, and CQ,ln (A.88), these coefficients are not always vectors. In some cases

they are (non-invariant) linear combinations of elements of tensors. In such cases,
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certain ones of the compatibility relations in (A.88) can be combined to obtain
invariant vector equations. In the examples in. the last sub-section of this
‘ section, the compatibility relations are always expressed as invariant forms

(that is, as invariant-scalar and vector equations.)

_ " The satisfaction of the- compatibility- relations by the: quantities
.gf‘ and’ zgf cannot be verified unless the values of these quantities are known.
But the valqes of these quantities cannot be obtained until the equations of mo-
‘tion have been completely solved. For this reason, the compatibility relations
"-must be regarded as constraints-on the values of the quantities ;t(and 7;’ |
“As” 1mp11ed above the compatability ‘relations cannot 1ntroduce more 1nformation
’than that which 'is 1nherent in the relations (A. 87), which they replace
For the sake of tidiness and vigor of expositioﬁ, it is desirable, in
the transition from the Lagrange-multiplier formulation to the formulation em-
ployed in the Calspan model, to replace the relations in (A.87) by mathematically-
equivalent relations. Since it cannot be claimed that the compatibility rela-
: tions in (A.88) are completelx equivalent to the relations (A 87), a complete
equivalence w111 be established through Lemma 2.
'Ifithe{relations'in'(A.87) are solvable, they are ﬁathematicaliy-equiv-
- alent to the compatibility relations (A.88) taken'in conjunction with parametric
”ﬁfexpre551ons which express the general solutions of the relations (A.88) for the

'quantitles'
In proving Lemma 2, it will be convenient to introduce the expression

AICNCANCANCANCIIN

R B G MR . (A.90)

to represent the parametric form of solution of (4 114)" for the 31»1'- In
(4.90), C A% ), (850, C£L ), (gt ) demotesets for £=i.zym=i...m
and (~aQ ) = an arbitrary - parameter set d; ,¢=/,... 3m~/ . The arbitrary

value parameters; ~%; , express the arbitrariness in the solutions iin -of
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the relations in (A.87). If the rank, Le,of the matrix of the system (A.87)is
equal to the total number of unknowns, 3M, (the M'vectors,_3zn-have‘3M compo-

nents) there are no arbitrary parameters, 4 , and the vectors, , are uniquely

x
”
determined. If 3M > I, there are 3M-I.parameters 4 .

To prove Lemma 2 it must -be shown that, if the relations:(A.87)‘ére
solvable, then the relations (A.87) imply and are implied by the compatibility

relations (A.88) in conjunction with the solutions in .(A.90).

‘The forward implication follows immediately from the discussion on page-
245 of Reference 12.* The reverse implication follows, provided that.subject.to
the satisfaction of the compatibility relations, the solution for the 3;” , Trep-
resented in (A.90), satisfies the equations (A.87). The discussion on page 245
of Reference 12 indicates not only steps which can be taken to obtain a generai
solution, but proves (again subject to the satisfaction of the compatibility fe-
lations) that the general solution so obtained does indeed satisfy the system of

equations in (A.87). Thus, Lemma 2 is valid.

With a simple proviso, the conditioh of solvability of the relations'
in (A.87) can be removed from the statement of Lemma 2. This proviso is in that
it be understood that incompatibility in the relations (A. 87) is equivalent to
the failure of satisfaction of the compat1b111ty relatlons This prov1so is, of_~
course, just the statement of Lemma 1.  With-this proviso, it can be stated (w1th-
out further qualification) that the relations in (A.87) are mathematically equiv-
alent to the compatibility relations, (A.88) taken in conjunction with the ex-

pressions (A.90) for ?;"

* In Reference 12, arbitrariness in the solution for the unknowns is brought out
by showing that 3M-I.of the unknowns may have arbitrary values. Clearly, the
assignment of arbitrary values to 3M-I. unknowns is equivalent to the intro-
duction of 3M-I_arbitrary parameters, as in the representation in (A.90)
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The transition from‘the Lagrange-multiplier-dependent formulation to
the formulation_employed'in the Calspan Model is'now obvious. 1In the former
formulation, the relations in (A.87) are-employed. To obtain the latter formu-

lation, the relations in (A.87) are replaced by the relations in (A.88) in’con-
junction with the relations (A.S;)il'lt'is clear that the compatibility rela-
tions (A.90) represent the result of eliminating the Lagrange mulitpliera from
the equations of motion. Thus, in the'Calspan formulation, the solutions for
the physical quantities of interest can be obtained from the equations (A.32),
(A.33), (A.34), and (A.88), and the expressions for i;'in'(A.Qo) are not needed.
The exposition and proof of the mathematical equivalence of the Calspan formu-
‘lation to‘the Lagrange multiplier-dependent formulation is now complete.

Wuis.. - Since the 'constraints which arebimposed by a simple joint involve ‘:
ohly two rigid bodies, for each value of m in the constraint relations,'/uf»'

and Qﬁ vanish for all but two values of 1. For the purposes of the analyses
of joints given in the next subsection, it is desirable to identify each con-
straint relation in terms of the bodies involved. To this end, the subscript

”n

m in the quantities -f’(, ;71, A;, 5,;,? can be interpreted, not as a simple sub-
scrlpt but as a trlplet subscript: - v - ’ :

S ("< -4 7’) (A.91) -

-‘In CA 91), k and 1 are labels of the 1nteract1ng bod1es and n denotes a partlcu-:

lar .constraint resulting from th1s interaction. For example,

v 1,3,2)
means the second constraint relation resulting from the interaction (through a _
joint) of body 1 with body 3. Clearly (k,1,n) and (1,k;n) refer to the same con- |
straint. -~ ’ : : '

I£f m=(k,1,n), ,C’ %}, Al , 8yall vanish unless k # 1 and j is equal
to k or 1. Thus, in the triplet notation, (A.82), (A.83), and (A.84) may be

re-expressed:
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By & @w T+ 8 *-tax z 7+ Z;n o
ZL78t, Zf- 1. at

» ;Ln. é;» ’ Tme T ‘lzr éinv

—-¢ . - - "éA

?7?" = Jm A P 77”’ = Zm. ﬂm

7 =(é3—4,7t) - 3 - (A.92)

Since a single joint can only transmit one net constraint force and
one net constraint torque to a given body, there is, for a given joint, a maxi-
mum of two vector constraint relations. In the next subsection, the constraints

are categorized as force-type and torque-type constraints.

A.2.4 . Examples

In this subsection, the constraint relations corresponding to fourA;
simple joints are expressed.  In each éxample, the compatibiiity relations are
inferred, and the mathematical equivalence expressed in general in Lemma 1 and
Lemma 2 is demonstrated. In the case of the hinge joint, it is shown that the
compatibility relations offset the effect of the redundancy in the constraint

relations.

The analyses depend only on the relations in (A.92). Since for each
constraint only two rigid bodies are involved, there is no loss of generality
in labeling our body by the index 1, and the other body by the index 2. The

relations in (A.92) can then be re-expressed.

. 57 z_,'z '.z
A e + B X -?-ﬁ,z-aJ—B-z .
7 7 i (A.93) .
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L= - , - 2 . .
- N " (A.94) -
. '_'/ - , - -» | 2
N » = 1 I3 ﬂ . >? = 2 . /9 .

where the subscrlpt n can be identified with n in the deflnltlon of the trlplet
subscrlpt m in (A. 91) The additive vector, Z; has been deleted from the re-

lation (A.93) since it is zero in the cases of interest.

-There are, at most, two constraints corresponding to.each joint. 1In
the first type of constraint, which will be labeled n=1, the fensors E; and.ﬁ:
are nonvanishing and they have inverses. 'Thus, the transforms in (A.94) can be
inverted and the constraint torques can be expressed as linear functions of the
constraint forces. This type of constraint (n=1) will be termed a force-type

constraint.

In the second type of constralnt (n~2) the constralnt forces vanish.

|

ThlS type of constraint will be termed a torque-type constralnt

" Every joint has exactly the same force-type constraint, and all joints
except the ball joint have both force-type and torqﬁeFtypefconstraints. For this

reason, the ball joint is discussed first.

A.2.4.1 The Ball Joint

The basic geometry of the rigid bodies and the joint is depicted in

Figure A,2.
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body 1

Inertial Reference

Origin
Figure A.2 BASIC RIGID BODY GEOMETRY

~ The vector 7; is the position vector of the joint relative to the
c.m. of body 1 and the vector % is the position vector'of'the' same joint rela-

tive to the c.m. of body 2. From the figure

- - - -

X

~

(A.96)
Since the position of the joint is rigidly fixed relative to both bodies, it is
clear that [F], (¢=1,2 ), is constant, and the orientation of 5 (L= 1,2) is

completely determined by the orientation of body,é 5(L=42). The orientation of

/(f (j:I,Z) can be determined from the relation:

Ao _ L Al
eJ- _ZSL CL
&Y (A.97)

Where the unit vectors éjo and % are defined in the content of equation (A.37)

4 . . . .
and 5‘3 denotes a direction-cosine matrix. From (A.97)
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Ao —l ,&
- &.
J Z' J 6
.
— a

Since g is rigid relative to body A, its ,components, e‘.p 'F;( » in-the body-fixed

(A.98)

coordinate system are time-independent constants. Therefore, (A.98) may be em-

ployed to determine the components of P; in the space-fixed coordinate system.

The transform (A. 98) can be re- expressed in compact vector notation by

introducing the vector r g1ven by

-+ _ 'F/\g‘/\j’. >
=2 &8y
[

(A.99)
Clearly, the vector a" is constant. From (A.99)
- Ao Y
’20 . C‘: - Q . c‘,
substituting into (A.98)
-~ AN : L ro o
’ r, e = S.e.-r
whence TS 4? i €T
- = .o ) . ' _ .
rp = 8°-1, ._ 4=7.2  (A.100)
Where 5% denotes.the transpose of the tensor slgiven by
4:/,:/ , %
From (A.100)
> -5, o : s : o
o= wier, ‘ (A.101)
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which may be re-expressed

F oo o d
AR -
* (A.102)
where \N’?denotes the skew-symmetric tensor
R S S P
=-ITQw”"' = -w”e T
W (A.103)
and I denotes the identity tensor.
Differentiating (A.96) and employing (A.101) results in
- -y :‘2 -2 - ’
' @®Or =24 w Oy (A.104) -

Equ‘ationv(A.104) is, from the foregoing discussion, a force-type constraint re-
lation. It represents the force-type constraint for all the joints discussed
in this section.

»Comparing (A.104) and (A.93), it is conéluded that
B,I = 5, = I

- 2 -
a] = -I®r, ; A; = IT®r,

Substituting into (A.94) and (A.95) and rearranging, results in

- — - -
o= A FFo= -3,
>, - - -2 - -
n' =r®iA, ; h, =-r, @A '
4 7 17 > { 2 1 (A.lOS)
The general solution for _}':‘ is clearly
- -
A, = F

(A.106)



The:cdmpatibility relations are obtained by eliminating 5: from the equations
(A 105): =" SR

- _;z ' ’

1. . . ’

HoFFT =00 .
-7 = -/ . .-sz_ —_ -2
Ty = hRef Ny = hz;ez*; _

(A.107)
Cledrly, in accord with Lemma 2, (A.106) in conjunction with (A.107) implies and
" is implied by (A.105). - ' , L . _

In the formulation of the Calspan model, there are four vector un-

knowns, ?II, -/.-,z, 77‘,' ,;}I‘ , corresponding to the ball joint;. Since the compata-‘
bility relations, (4.134), in conjunction with the constraint relation, (A.104),
constitute four vector equations, the number of unknowns. In the Lagrange-multi-
plier formulation there is one constraint-induced unknown (namely 3; ) and our
corresponding constraint equation, (namely (A.104)). Again, the number of equations

is equalfto'the number of unknowns.

- %<7 - '~ The relation-(A.96) is empldyed as an initial condition. In principle,
the satisfaction of (A;104) would insure the satisfaction of (A.96) for all times&
However, it has been found that because'of accumulated computer-round-off-errors,
the employment of (A.104)“in‘the'computations does not insure the satisfaction of
(A.96) for all ¢ . For this reason, both (A.96) and (A.104) are employed in the
computations, but not in a redundant manﬁér. In particular, (A,104) is employed
with (A.107) and the differential equations to solve for X,Fand F, . (A.96) is
then employed to obtain” X~ . This procedure -insures the satisfaction of (A.96)
for all times, -f.. A parailel procedure is employed when there are more than:

two bodies and more than one joint.

- Since the ball joint is completely flexible, it has no torque-type

constraint.
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A.2.4.2 The Locked Joint

The locked joint is a joint that has seized or frozen so that it has
zero degrees of rotational freedom. It has several uses in the Calspan Model,
including the representation of a human joint which is locked due to muscle ex-

~ertion.

_ The force-type constraint relatlon for the locked 301nt is, as already
1mp11ed the same as for the ball joint. Slnce ‘the locked joint has no rotation- -
al degrees of freedom, it forces the equallty of the angular velocities of bodies
1 and 2. Therefore, the torque-type constraint for the locked joint may be ex- |

pressed

(A 108)

To verify that (A.108) and (A.104) adequately descrlbe the locked joint, it is
observed that the rank of the system (A.108) and (A.104), when considered as an. .
equation in the unknowns w” and }:(" > is six. Thus, (A.108) and (A.104) re-
move all six degrees of freedom in the motion of body 2 relative to the coordi-
nate system of body 1.  In other words, the two bodies behave as a singlé rigid
body.

Comparing (A.108) and (A.93), it is concluded that .
B8] =85 =0
Ay =-AZ=1I

Thus, the constraint forces corresponding to (A.108) are zero, and (A.95) be-f:

comes:
- -2 —p
Ng. = Az 3 Ny = -—Az
. (A.109)
Eliminating Ffzresults in the compatibilify relation '
Tii +FE =0
(A.110)
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There are, for the Calspan formulation, the two unknown constraint,torqueé F;
and Ziz. These can be eliminated from the equations of motion by employing
(A.110) and (A.108). = © - " I

A.2.4.3 The Hinge Joint

RN Thé hinge joint has a single pin, the orientation of which can be de-

. . | - :
noted by the, unit vector. 4, . Since-the pin is rigidly oriented relative to -

body 1 and to body 2, it must rotate with each body. Therefore, in-parallelism
with the relations (A.100) and (A.99), one can put ' :

A

A . ~t No
A ~ A.111
ﬁ, = 52'6; ( )

where

7

2
2
L

satisfaction of (A.111). From the time derivatives of the relations m (A.111),

one concludes

(A.112)

Equation (A.112) is the torque-type constraint relation for the hinge joint. -

Comparing (A.112) and (A.93), it is concluded that’
TR "

b2=8;=0; Af=-4, = 10h, W1
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and the expressions for the constraint torques in (A.95) become

— - A . 2 — A
nz’ = 'i’z ®h, ; 77.2 = 2, ®h,
| ‘ -(A.114)
clearly, (A.114) implies S
P =0
_rTZ’ ¢ 24 = 0
(. 115)

To obtain the solution for i’z; one can take the cross. product of l; and the
second of the relations (A.114): Co L - )

* .

A — N
'h,@”;:/")\’Q(szh)
- A - ~
= 2~ h/ 2 hl
or rearranging
— A -2 : 2 . .
Ay = h @byt by zhr o (A.116)

But, (A.114) implies that JL,_ is amblguous to w1th1n an arbltrary mult:.ple of
4, . This fact and (A.116) lead to -

> — 2

A _ .
Az = /'/ ®n, + 0»/1 (arbitrary a) - (A.117)
as the general solution for - i‘z_ .

Substituting (A.117) into the second of the relations (A.114)

"~ .‘.“ ~ A
#g = (h,®@nf +ah, )@h,

-2 A -2 N
= ng = hy - ng hy

which reduces to an identity by virtue of the compatibilify relations. (Av.115)“.

Thus, (A.115) in conjunction with (A.117), imply (A.114)

This example is the first in which the solution for -i is ambiguous.

The ambiguity results from redundancy -in the constraint relation (A.112).
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7 This reiation only.constrains(&@—&&)to be paralled to é » SO the
rank of the matrix for the relation is two. On the other hand, the relation
corresponds to three component equations and ‘1 has three components. In the
Lagrange- mu1t1p11er formulation, the amblgulty in 12 could be removed by an
additional constraint such as - - A v

Ag ~hp = O
which can be satisfied within the arbitrariness of the solution in (A.117).
Turning to a consideration of the formulation in the Calspan Model,
there are two vector unknowns, Zz and 222, which_result from the torque-type
constraint. But the rank_of‘thevmatfix‘of,the systeﬁ composed of the constraint:
relation (A.112) in conjunction with the compatability relations‘(A.115) is
six. This rank is the same as the rank of two non-reduhdantvvector equations.

Therefore, the equations of motion can be solved without ambiguity.

A.2.4.4 The Universal Joint

The double-trunion univefsal joinf has two hinge'plns, of which the.
axis of one - 1s r1g1d1y orlented relatlve to body 1, and the axis of the other is
r1g1d1y orlented relatlve to body 2. The only rotat10na1 constralnt in the
301nt is that the two h1nge p1ns are always perpendlcular Thls constralnt ean

be- expressed by the relatlon

(A.118)

A : B e - » R :
where 4& is a unit vector in the direction of the pin which is rigidly oriented

relative to body A, ([:42);

Relations similar to (A.111) can be introduced to express the orien-
P : .

A
tations of 4 and 4,. Differentiating (A.118) with respect to t results in

P S . 4
h, ® hy-ew' = hy® hg-w” (A.119)



which is a scalar constraint relation. It is equivalent to the vector comn-

straint relation

~o

’ A A - N b S S
3,’_ hy ®hy &l = e h®hy -0 z (A.120) -
4Comparing'(A.120) and (A.93), it is concluded that
8, = 8 =0
Co o A A
Aj - -A; = €°h, @ hy
so . (A.93) becomes

- - - A\ A A

nzl = ’7; = AL M 610/7/ @/72 R . .
: (A.121)

A

If %, e,a is replaced by the scalar Lagrange multiplier 1, , the relations (A.121)
are identical to those that would be obtained from the approach which is.formal-
ized in '(A.85) and (A.86). It is of academic interest that the vector '7; may be .

retained and the ambiguity removed by the supplementary relation
;\2 ® g, =0
‘ . - (A.122)
which restricts a;' within"thenrange.of the general solution of (A.121) for y VI
Since (A.122) has a rank of two and (A.119) has a rank of one, these two re-’
lations do indeed remove ambiguities in 'i-z in the solution of ‘the:equations of
motion. ' . '
The equations (A.121) imply the compatibility relations.
-r;.,' + ;7-22 =0.
—f A N .
riz x (hy x hg) =0 o (A.123)

The general solution to (A.121) for X, is

— A N -
- ”2,'(1® 2)e1a —- Y] :
K P S A R C (a124)
h @ h,, '




¢

where a is afbitrary. To proVe this, (A.124) is substitutéd into‘(A.121). The

resulting relation

H

L, A (e hy)
, 2

ﬂz == A
| &,

® | 3

@ /\. A

~ (hl®hz)

h, | (

is implied by (A.123). Thus (A.124) and (A.123) imply (A.121). It will be ob-

served that the expression (A.124) can be simplified since, from (A.118),

1 b @ bl =1

In the Calspan formulation, the torque-type constraint in (A.119) leads
to two unknown constraint’ torques, ﬁ: and 7Zf. Sincé»(A.llQ) has a rank of one;
and the total rank of the relations (A.123) is five, the equations of motion can

be solved unambiguously.
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