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FOREWORD 

This document is one of four manuals that constitute the final report 

of the research project conducted under Contract No. DOT-HS-6-01300 for the 

National Highway Traffic Safety Administration. Dr. John T. Fleck and 

Mr. Frank E. Butler of J & J Technologies, Inc. served as Principal Investigator 

and Project Engineer, respectively, during their earlier tenure as members of 

the Calspan Transportation Research Department. Subsequently, Mr. Norman J. 

DeLeys coordinated the efforts of Ca1span and J & J Techriologies, Inc., who 

was retained as a subcontractor to maintain the continuity necessary to 

preparation of the report. 

The Contract Technical Monitor for this project was Dr. Lee Ovenshire 

of the National Highway Traffic Safety Administration. 

This report has been reviewed and approved by: 

. ,'\ 

/-- ··-· ·, __ ... 
.... _ . .:~·~"''-!-'-)' ...,. 

, 
. ... ~" •tl-· •.!-.-£ 

.Anthony L. Russo, Head 
Transportation Research Department 

I • • • . l.l.l. 
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General Notation 

Due to the large number of variables used to develop and derive 

relationships in this volume specific notation is defined in the section where 

it is used. In many cases, variables which are defined in one section may have 

a different definition in another section.. For example, the symbol jO is used 

for the shortest vector from origin to the plane, it is also a vector defining 

the specified fixed distance in the fixed distance constraint, and it is also 

used as the friction coefficient for the sliding constraint. The following is 

a list of nomenclature which is used extensively throughout Volume I. 

Q 

A 

z 
4 ,., .. 

i, j, k 

N 

h 

Ellipsoid matrix 

Direction cosine matrix for the nth segment 

Constraint force on the nth segment applied at 
joint i 

Identity matrix 

Unit vectors defining orthonormal inertial 
reference system 

Mass matrix of the nth segment 

Total number segments 

Subscript used to define the nth arbitrary 
segment 

Constraint force (position, sliding and rolling) 

Vector from ellipsoid center to ellipsoid surface 

t-..,j Location of joint j in the local system of segment 
n. 

+ Unit vector normal to a plane 

X 



t 

X . 
h 

Independent variable of integration 

Vector position of the e.g. of segment n in 
inertial reference 

Inertia matrix for the nth segment 

Angular velocity vector for the nth segment 
in n's local coordinate system 

xi 



SECTION 1 . 

INTRODUCTION 

In 1970 Calspan Corporation (formerly Cornell Aeronautical Laboratory, 

Inc.) began development of a mathematical model for simulating the three­

dimensional dynamic responses of a motor vehicle crash victim. Under the joint 

sponsorship of the Motor Vehicle Manufacturers Association (MVMA) and the 

National Highway Traffic Safety Administration (NHTSA), the original develop­

ment and validation of the program was accomplished in two phases (Ref. 1 and 

2). Except for a special version of the Phase II crash victim simulation (CVS) 

program created for the MVMA (Ref. 3), the next major developmental effort was 

accomplished for the NHTSA and resulted in what was designated as the CVS-III 

computer program (Ref. 4). 

Recognizing the CVS-III as a potentially valuable tool for aiding 

studies of cr~w member dynamics during ejection from high-speed airc~aft, the 

Air Force Aerospace Medical Research Laboratory (AFAMRL) sponsored the development 

of a· special version of the program that formed the basis of the.AFAMRL 

"Articulated Total Body" model or ATB (Ref.· 5). Later, the ATB model was updated 

and some new features were added under another contract with the AFAMRL (Ref. 6). 

This report documents work performed in the research project entitled 

"Validation of the Crash Victim Simulator" under Contract No. DOT-HS-6-01300 with 

the NHTSA which states the general objective as "the development of the CVS to 

a level that it can be used for a variety of rulemaking activities." A signifi­

cant goal was "to conduct studies that specifically, quantitatively and validly 

pertain to the Part 572 dummy in several realistic crash safety compliance test 

situations." The project consisted of two principal areas of effort: (1) 

further development, improvement and refinement of the computer program, 

culminating in a version designated as the CVS-IV, and (2) the performance of 

detailed measurements and tests to define inputs for modeling the 50th percentile 
I 

male dummy conforming to government specifications (Ref. 7) and executing computer 

simulations of experiments performed with the dummy to examine the validity of 

the model results. 
1 



The CVS-IV version of the computer program incorporates many 

modifications and features developed in this project as well as in conjunction 

with other closely related research studies (e.g., Ref. 5, 6 and 8). Among 

the improvements implemented in the CVS-IV are the following: 

• a new, more efficient integration technique. 

• a routine to automatically position a seated occupant in 

equilibrium. 

• an advanced harness belt formulation that treats interaction of 

belts connected at a common junction point, belt slippage on 

deformable segments, and allows use of rate-dependent functions 

for calculation of belt forces. 

• simulation of aerodynamic forces acting on body segments that may 

be partially shielded. 

• improved routines for calculating joint torques. 

• · use of the main program integrator for computing vehicle and air 

bag motions. 

• the ability to specify the motion of as many as six segments. 

• a provision to account for segment principal axes that are not 

coincident with geometric axes, thereby allowing use of any convenient 

geometric axis system as the reference for segment input data. 

• ·generality in specifying axes about which segments are rotated, 

and the sequence of rotations, to achieve a desired initial 

orientation. 

• elimination of the need for multiple output units. 

• routines for computing injury criteria values (HIC, HSI, and CSI) 

and for plotting any output variable(s) against any other variable 

or time. 

During the course of the present study, several interim verions of 

the computer program were distributed to numerous users throughout the world . 

. However, it should be noted that the modifications of each version were incor­

porated in such a way that, in most instances, input data decks reMained upward 

compatible and useable with successive versions of the program. 

2 
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The final report of this project is composed of four volumes: 

Volume 1 - Engineering Manual - Part I: 

Volume 2 - Engineering Manual - Part II: 

Volume 3 -User's Manual 

Volume 4 - Programmer's Manual 

Analytical Formulation 

Validation Effort 

Volume 1 describes the analytical formulations, assumptions and the 

detailed development of the mathematical equations and relations used in the 

program .. * Volume 2 documents the measurement of the dummy geometric, inertial 

and joint characteristics and experiments performed to validate computer moCiels 

of the physical systems tested. The experiments simulated include static tests 

of an ellipsoidal air bag to check the validity of the idealized bag shape and · 

force algorithms, dynamic pendulum impact tests of dummy component sub-asse~blies, 

and impact sled tests in which the dummy was restrained by an air bag and a 

three-point belt. restraint system (Ref.· 9) .. The third volume provides instruc­

tion on how to use the program. Besides giving a detailed description of all 

data furnished on each input card; it explains the special input and output 

features and provides examples of program applications along with the Job Control 

Language needed to execute a simulation run. Volume 4 is intended primarily 

for use by programmers interested in the detailed structure of the program. 

Included in Volume 4 are descriptions of each subroutine, cross reference charts 

showing the subroutines called by other subroutines, labeled common blocks used 

by each subroutine and usage of each variable in the labeled common blocks in 

every subprogram, and a complete listing of the computer Fortran source deck. 

* See also Reference 5 and 6 which document the analytical formulation of some 
algorithms and features not decribed in detail herein. 

3 
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SECTION 2 
\ 

GENERAL MATH AND GEOMETRY RELATIONSHIPS 

In order to assist the reader in under standing the theoretical 

development of the equations used in the program, a description of general 

mathematical notation and basic geometrical relationships is presented. 

This includes discussions of the coordinates and vector I matrix notation 

adopted, basic equations for defining planes and ellipsoids and the relation­

ship between rotations, quaternions and direction cosine matrices. Finally, 

this section concludes with a discussion of a method for determining yaw, 

pitch and roll angles from the direction cosine matrix. 

2.1 COORDINATES AND VECTOR I MATRIX NOTATION 

In the development of the program, it was convenient to use 

amatrix notation because it bears a one to one correspondence with the 

· coding. For example, consider figure 2. 1 below 

SE~M ENT ?PI 

--· /m 

Figure 2.1 BASIC COORDINATE·SYSTEMS 

x - location of c.g.as measured in the inertial reference 
r' - location of a point in segment min m's local reference 
y - location of the same point in inertial reference 

4 



Each of the quantities~. F, y have three components and are 

considered as column vectors (a 3 x 1 matrix) thus (the bars are deleted.) 

X= ( ~:) r = ( ~) y = U:J 
(2. 1) 

In standard vector notation write the following: 

X=X,l+Xz.f+X3k 
- --. -r = ~'"t lm + ·~ i-m + )"3 /em 

_.. ....,. - _. 

Y = Y1 L + Y2 j + Y
3 

k 

t'/ (2. 2) 

where T, f, k are unit vectors along the axes l, 2, 3 of the inertial reference - - -and i , j , k are unit vectors along the axes 1, 2, 3 of the local :t"eference. * 
m m m 

Unless otherwise stated we assume all references systems are right handed 

orthonormal systems. That is .... ,.. ~ ...... .... 
.i,•L=J•J=k·k=f 
.... ..... - .... _.. 
i·j = j·lt = l ·k=O 

(2. 3) 

where. 11
• ''represents the dot (scalar) product, and that 

...... ................ -- .-
i ® j = k ,J®k=i ' k® t: = 1 
~ ..... - --
i®i=j.®j= k®k. =0 

(2. 4) .. , 
where ® designates the cross (vector) product. 

The direction cosine matrix, D, is the 3 x 3 matrix which con­

verts the components of a vector as measured in the inertial reference to its 

components in the local system, thus the 3 x 1 matrix resulting from the 

multiplication operation Dx would be the components of x as given in the 

local system. 

* Alternate notation which is often used is the expression of a vector in terms 
of the unit basis vectors x x x~ or e e e3 . Then a compact notation for 

• - g 1•2.)::> ,, 2) . 

the. vector, X= Z x,x or f = i r. e 
P:.r p r p p .... , 

5 
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Note that the unit vectors are related by 

( t) = o. ( i) 
Explicitly writing D in terms of its components yields 

du d,2 d,, . 

Om = d2.f d1.2 d25 

d31 d3Z d33 
m 

Note also that, 

......... - - - ...... { . i 
"' J . {171 K • l 111 

- -D = , I i • Jm J • Jm /( • j., 

.... -i . lc , /( • km 

(2. 5) 

(2. 6) 

~ 

r- k, 
(2. 7) 

Since the dot product .of two vectors is the product of the --magnitudes times the cosine of the angle between them, the dot product i • i 711 - -is the cosine of the angle between the vector lm and the vector [. Thus each 

of the components of D is the cosine of the angle between the respective unit 

vectors, hence the name direction cosine matrix. Since the direction· cosine 

matrix is orthogonal, the inverse of D, D- 1, is the transpose of D, D T. 

i.e. D-1 = DT 

hence DDT = D T D = I, the identity matrix. (2. 8) 

To obtain the transpose of a matrix interchange the rows and columns: if 

dm., are -the elements of D and Q177nare the elements of D transpose, 

d17111 = Q,;'" (2. 9) 

6 
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In vector notation, it is permissible to write the expression 

- - -X+ r = Y 

but in matrix notation it is not permissible to write 

because this would imply that 

x + r = Y 

X 1 + r1 = Y 1 

Xz t r 3 = Y 2 

X3 + r3 = Ya 

(2.10) 

(2. 11) 

(2. 12) 

which is true only if all three quantities have been expressed in the same 

reference system. 

The proper relation is 

-I = y X+ D r 

or equivalently 

X + DT r = Y 

or in the local reference systems 

DX + r = DY 

For example, substituting equation (2. 2) into (2. 10) yields, 

-X 1 i + X 2 j + X 3 k. + r1 i 711 + r2 j m + r3 k m 

.\ 
!: 

- ..... 
= Y, i + Y2 j + Y3 k 

7 

i 
j ,. 

,; . 

(2. 13) 

(2.14) 

(2. 15) 



Examining (2. 15) shows that it is incorrect to say x 1 + r 1 = y 1 since x 1 and y 1 
multiply i, and r

1 
multiplies i , andi is not necessarily equal to i . 

m m 

But from z. 5 we get 

-t, = 
-1'> 

d""' = -k, = 

hence - ..... -r, l, + '2 J., + '3 lc7fl = 

d., i + d,zL + c:l 1:1 lc 
d 2 , T + -cl.u i + d~· lc 
a

3
, T ·.,. d3J.J dl3-; + 

(d, r, + d1 , r, t d~, ra) T 
+ ( d,, r1 + c(u r2 + d32 r• ) 1 
+ ( cJ,,~ rt + clzs ,.2 + cl&s r3) k 

. . 

(2. 16) 

(2.17) 

It can now be recognized that the quantities multiplying i, j, k are the 

quantities obtained from the matrix operation 

Dr1" = 
( 

d, d2, 

c/12 du a,, dzs 

d31 ) 
d:ll 

d3S ( ~: ) 
Hence the validity of equation (2 .13) is established. 

Dot Product 

(2.18) 

In matrix notation the dot product of x and y is the sum of the 

products of the respective components when given in the same coordinate 

system, hence 

X • Y = X 1 Y1 + X z. Y2 + X 3 Y3 

Note that 

X• Y = X 7 Y = Y·X::: yTx (2. 19) 

since X r = (x 1 , X 2 1 X 3 ) (2.20) 

and 

XTY = (x, Xz X3) ( r: J 
= X 1 Y1 + X 2 Y2 + x3 Y3 

(2. 21) 

8 



In vector notation 

x. r ·is a valid expression, but in matrix notation 

X • Y" is invalid and must be written as 

-1 T -1 
X· D r orX D r . 

X·r= X·(D-1r)=XrJ)-1r=XrDrr =(DX)rr=(Dx)·r 

here use the matrix identity 

(AB)T = BTAT 

(2.22) 

(2.23) 

Note that in 2. 22 parentheses have been used to avoid confusion on the· order 

of operation. 

Also note that the notation X• is equivalent to xT, hence, 

it would make sense to write A • B for AT B, where A and B are matrices for 

which the product AT B is defined. 

Since X. X = x:; x; + X; the magnitude of X is defined as 

I X f = .J (x · x) 
(2. 24) 

Cross Product 

The cross product of two vectors x, y is designated by x\1Jy 
and may be obtained from 2. 2 and 2~ 4, thus 

... 
X® y = (x, 1 + x. 7 + x~ k}9(Y, 7 + Yz i + Y3 kJ 

= x, Y, T ® r + x, r3 r ® T + x, r a 1 a> "i 
.... - -+ X.z Yt i ® i + X'z Yz J ® 1 + Xz. 

....... -:-- - -:'-
+ x3 v 1 K ® t. ..,. x$ Y.c k ® 1 + x3 

Y, j®lc 
y3 k® k 

= (xa Y3 - X3 v.a) 1 + (x3 v, - X1 ~ Yj + (X t Y2 - X z Y1 ) k 

(2. 25) 
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where the fact that a®b = - b@a has been used. 

Note that the final result in 2.25 is the expansion of the determinant 
...... -i . 

IC t 
x, J<~, X~ 

Y, Y.a YJ (2. 26} 

The components of x.and y must be expressed in the same coordjnate system. 

In matrix notation the cross product is 

X®Y 

with tlie same meaning. That is if 

then. 

X= ( ~:) ,Y = 

( 

x2. Y3 -

)( ® Y = X3 Y1 
. x, Y

2 

Note that X ® may be defined as the matrix 

p. -x3 
x®= 0 

- Xz x, 

Since 

= ( ~. 
- x, Xz 

) 
( Y, . X® y 0 - x, Y, 

-x2. x, 0 Y, 

This is analgous to our use of X· as X7 · 

10 

( ~; l 
X~ Y2 

x, Y3 

x, y1 ) 

x, ) 
-~, . 

) = 

(2. 27} 

(2.28} 

(2.29} 

( x, r, - x, Y, ) 
X1 Y, - X;z Y1 
x1 Y, - X& r, 

(2. 30}. 



j 
~ 1 

Matrix notation permits the. assignment of a definition to the operator X® 

(i.e. the matrix as defined in 2. 29) whereas in ordinary vector analysis 

X ® has no meaning by itself. 

This is useful in later work where it is convenient to consider an expression 

like 
-h®(h® 

(2. 31) 

where h = ( t:) 
and h® is defined by 2. 2 9. 

To make sense of expression 2. 31 consider the following identity 

a. ® (b ®c) = (a · c) b - {a.· b) c 
Then if a."' b· h and· c • y , the following results 

-h ® (h®Y) = (h· h)Y- h{h• Y) 
which can be written as 

-j, ® (hxY) = (J?Th I- h h 7 )Y 

Thus - J, ® { h ® = h T h I - h h T is a matrix 

T . 
If h h = 1 (a unit vector) then 

- h ® (h ® = ]-hhT (2. 32) 

and 

-h ® (n ®Y)= Y-h t,.y 

This may be recognized as a projection of y on a plane perpendicular to h, 

thus 1-hhris a projection operator (matrix). 

11 
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2.2 GEOMETRIC RELATIONS 

PLANES. Planes are used extensively in the program for 

modeling various surfaces in or on the vehicle. 

Q· 

L Figure 2.3 PLANE COORDINATES 

Points which lie in a plane satisfy the linear relation 

ax 1 + bXz +CX 3 =d 
{2. 33) 

where a, b, c, d are constants and x 1, x 2 , x 3 are components of the vector 

x which is defined from the origin to the point in the plane. 

Let j be the vector which locates the J:>Oint in the plane which is nearest to 

the origin; hence p must be perpendicular to the plane and I pI is the distance 

of the plane from the origin. 

13 
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It is convenient to define the plane by the unit vector 

:t • ~iOI ' and the distance P = 1(51 

Therefore ' 

- a. t = . b - ..... c + 
{a .. +b 2 +Ca 

I. + ;:::::;;==:::;::::::;=­
/aa+b•.,.c::z 

J I a•+ b.+ ca 

The equation of the plane may then be written as 

or 

-:t-x=~ , -:t--=£=1 

T -t·X=tx=;5 in matrix notation. 

(2.34) 

1i 

(2. 35) 

(2. 36) 

Note that a vector which is parallel to the plane satisfies 7: • X= 0 

Contact Planes 

Contact planes in the program are defined as follows. 

-i. 
Figure 2.4 DEFINITION OF PLANE SPECIFICATION 

The user inputs the coordinates of three points P, , ;::; ,~ which lie in the 

plane (P~ = (x.,y.,z.), i=l,3). 
l. l. l. l. 

14 
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The program :-J!nputes the unit vectors (this is done in sub­

routine SINPUT) 

ql = 
(p2-pl) &; (p3-pl) 

I CPz-Pl) @ Cp3-pl) 1-· 

q2 = (p3-pl) & ql 

I Cp3-pl) ® qll 

q3 = 
ql X (p2-pl) 

I ql X (p2-pl) I 

(Note - these are matrix equations) 

Since f!t. and r;3 lie in the plane, fj 1 is a unit vector normal (perpendicular) 

to the plane. 

It also computes 

'if. ~ = !J 

,, . ~ = ts, 
~3. P, = ,1~ 

The equation of the plane is also given by fjt and,P'1 ; that is 

a point x lies in the plane if 

9t·X = fSt 

To establish contact, it is important to establish whether a point has pene­

trated the plane (in back of the plane) or if a point has not penetrated the 

plane (in front of the plane. ) 

The direction of 9t is used to define the front surface. Hence 

if 91 ·X >,61, .xis saidtobe in front ofthe plal!~.·and.if ~t ·X<fSt' x.is safd 

to be in back of the plane. The plane is given a finite size by accepting points 

which satisfy: 

0 2. qz · x - 13 z 2. lqz· CPz-Pl)l; 0 2. q3 · x- 133 2. lq3· ~p3-pl) I 
as points which are in the boundaries of the finite plane. 

i 
!' 
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Acceptable points are illustrated as the shaded area in the 

following figure. 

The recommended procedure for defining a planar surface 

is to use points such that ~- ~ is perpendicular to ~- P, as in the following 

figure. 

P:s 

··--------·-
P. 

The acceptable region is then a rectangle with fi , ~ 1 ':3. 
on the corners. 

Note that in the above figure the front side would be the side 

seen by the reader. I£ ?z and~ were interchanged, the reader would be 

viewing the back side. 

16 
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ELLIPSOIDS. Ellipsoids are used throughout the program 

for modeling the contact surfaces of the body and other curved surfaces such 

as the air bags or interior surfaces of the vehicle. 

t..,.. 

..lo. 

\("' 

+ 1L------ - J""' 

Figure 2.5 ELLIPSOID GEOMETRY 

Consider an ellipsoid whose principal axes are aligned with the reference 

system. Points 'r· and the ellipsoid centered at...l satisfy the relation 

( 1j
4
-,L, r + ( r::Lz r + tr.::•) • I 

(2. 37) 

where 

r ~ (~) L ~ ( ~:) 
and a. 1 , a 2 , a 3 are 

the semi axes lengths. 

17 
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This may be written as 

(r -1.) ·A (r-.1.) = 1 

where A is the matrix 

A = 

f 
a.• 0 , 

I 
0 -2 a., 

0 

0 

1 

(2. 38) 

o 0 af J (2. 39) 

For convenience in the following discussion let the center be at the origin 

( ~-= 0) . This places no restrictions on the development. 

The ellipsoid equation is then written 

r ·A r = 1 

(2. 40) 

If the reference system is rotated by the direction cosine matrix D such 

that r = DS 

(2. 41) 

then 

r ·A r = srorAD.S = S·{D7 AD)S = S·/35=1 

(2. 42) 

where B • 0 ~ 0 , is the matrix de scribing an ellipsoid whose principal 

axes are oriented by the rotation specified by the direction cosine matrix D 

with respect to the reference system of s. 

Note that A is a real positive definite matrix and hence B 

is a real positive definite matrix. (i.e. positive real eigenvalues.) 

Thus 2.40.may be used to represent a general ellipsoid with the restriction 

that A be a real positive definite matrix. 

18 
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Consider a general point X 

if X·AX > 1 

if X·AX<l 

if X· A X = 1 

the point is outside of the ellipsoid 

the point is inside the ellipsoid 

the point is on the ellipsoid. 

(2. 43) 

(remember that x is the vector from the center of the ellipsoid to the 

point X) 

Consider a point r on the ellipsoid 

Ar is a vector which is perpendicular to the surface at the 

point r~ The outward normal is then 

i: =A rjlA,.l 

(2. 44) 

A plane tangent to the surface at the point r would then be 

defined .by the vector t and the distance, ~1 , of plane from the center of 

the ellipsoid is; 

fit. = r · t = r· Ar/IArl = Y'lAr I· 

(2. 45) 

In words, the distance o,f the tangent plane at the point r on the ellipsoid to 

the center of the ellipsoid is J..jArj· 

2.3 ROTATIONS, QUATERNIONS AND DIRECTION COSINE 

MATRICES 

A direction cosine matrix is assigned to each segment to 

indicate the angular orientation of the segment. The direction cosine 

matrix is updated during integration by use of a quaternion (Eq. 2. 69 ). 

The integrator integrates the quaternion equation (Eq. 2. 70). Rotation, 

Quaternions and Direction Cosine Matrices are discussed in this section. 

19 
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2.3.1 Rotations in 3-D Space 

Any rotation in three dimensional space may be considered 

as rotating a vector b about an axis f through an angle e in the plane that 

is perpendicular to ji.. 

-~ 
- [ ., ~ b 

.:• 

0 

Figure 2.6 ROTATING A VECTOR 

Let R be the operator (matrix) which performs the rotation 

I 
b ... Rb 

(2. 46) 

R may be expressed as 

R • _,u. 1 -t cos S (I-~ ;1~..T) + 5 i Y1 S _,u. ® 
(2.47) 

where /A . _,iJ. = 1 
and I is the identity matrix •. 

From Figure 2. 6 write 

_., - - _....., 
b = oc + cd + db (2.48) 

20 



where 

0C =_/'-~Tb =;IZ(/it·b) 

cd = cos 8 {I-~_,P-T)b = cos 8 (l'-:;. ():..k)) _,., 
dh = 3i n e ,P ®b . ~ b~ = .s1n e~~ . 

Note that 

(l:;;,~.J:))·(b;Z.Cfi·b)) =(;;®b). ~6Jb) 
~ .... _. 2 = b . b - (,a. 6} 

The inverse operation (rotation through an angle - 8) is 

-I 
R =/-"-"'"T -r cos e (I;,P-/·'.T)- sine_/-l ® 

In ter,ms of the components ~ 1 ,,P-2 '/'" 3 of the vector,? 

R may be expressed as a matrix. 

(2. 49) 

(2. 50) 

_,P1
2 (t- ~o$ 8) +cos e _,u1..,.,uz(1-ct:Js8)7f35t#JB ~f/13 {t-cose)+/'-z sine 

R =I ./"-~1 (t- ~os8} ~3 sine /'1: (t- cose)+ctJs6 ~2~3 {t- CtJ~6);,t-c, ,1Lt16 

./l~.,Ut (t- cos8):P:z. .s,·ne ~8./"z (1- ctJs6)+_,p 1 si.ne ~: (t-cos6)+ C4S6 

(2. 51) 

by using the relations 

f"_/-T: 

and 

(,P,~,~,} = 
/..l f ,.,P-a ,/-" f /" 3 

z 
./..ll. /-"'z,Pa 

z 
/.l4/'l z ./', 

0 /"3 /"2 

../"®= """3 0 ""/"' t 

-:1-'z. ..P't 0 

21 
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Note that 

since 

and 

R-1 = I?T 

(;u. /-A_T) T = _,P-,/" T 

{~®)T = ~ ® 

Additional properties which may prove useful are derived below. The trace and 

determinant of R are given by 

tr (R) = t+ 2 cos e 

IRI= 1 
A A. 

* is -t.B 
and the eigenvalues of R are 11 e and e 

Note that 

\!. 

,/-",UT = (R + RT- 2 cos6I} /2 (1- ~ose) 

I 
/-' 

( 

r3 .z - rz3 ) 

r,3 - r31 

r.z t - r,z 

where rjk are elements of the R matrix 

/A ® = ( R- RT) I 2 sine 

R 
2 

::: R 7 + tr(R){R-I) 

combining the above, the characteristic equation is given by 

R 3
- tr(R)R

2
+ tr{R)R-1 =0 

(2.53)" 

(2.54): 

(2.55) 

(2.56) 

*In this equation, L = r-1. to distinguish from i used as index below. 
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The projection operators associated with the eigenvalues are 

Note that 

and 

2. 3. 2 

E I = ,;Ll-/1-T 

e~ = . ~'le =(I -p.,.u.r-//-1 t!J) p 
E = 3 E-t'& ::: (I /".P T + ~ril) ~ e 

E1 +e2 +Ea=I 

Ej E.1c = dj:k Ej 

where ffjl< is the Kronecker delta 

Quaternions 

(2. 57) 

In the program, quaternions are used to update the direction 

cosine matrices. A more elaborate development of quaternion theory may be 

found in Ref. 13 pg.168. The relationship between the rotation operator estab­

lished in Equation (2. 47)and quaternions is pr~sented in this section. A ro­

tation may be expressed in terms of a quaternion 

- - * b' =ph'} (2. 58) 

where rr = cos % + .sin % _,;;. 
and t = cos~ - sin % _}2 

A quaternion ·may be considered as four component matrix which has a scalar, 

a .. cos~ as a first term, plus the three vector components, 'li = sin %)1'. 
This results in the following: 

...:. .... _.. ~ 

b' =(t:Ji:+u.)b(a-u..) 

7l = oe r &C. - a: b ; + ;r PC 

....... _ 
ubu.· 

(2. 59) 
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Interpreting the results as 

ex b oc = oc~ h since o<. is a scalar 
_..,..,. _,., ~ -- ) 

()C b u = ()C.{- b. u + b ® 7i 

where the product of two vectors has been defined as, 

bu=-b·;-rb®; 
~---- ~- _,...,. ............ 
ubu = u(bu)={uJ,)u 

.... ~.. ~-- ........ --. 
= -b··uu+~·u6-u·bu 

Combining the above relationships yields 

when 

then 

and 

..a. , .... _...~ _.._,. ....... 
h = (a}-u..u)b +Zu•bu + 2~ u~b 

a. = cos% 

-- . 8/ _... 
u = stn / 2 .,LL 

1 f *=(a:.+ -u)(e:r.--;;) == t:tz. + u. u. = 1 

~ 

J/ = atJse1 +(.t- cds e);;;.. b C: + sln e;;. sb 

(2. 60) 

(2. 61) 

""i'= l?b or b; = 1~ b (see equation 2. 47)·· 

2.3.3 Relation To Direction Cosine Matrix 

If the direction cosine matrix D represents the relation 

between the vector If in a reference system and b as measured in a local 

system, then 
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b = Db 
(2. 62) 

and 
b = DTb 

Previously we defined a rotation matrix R as an operator 

which, when applied to a vector measured in a particular coordinate system, 

would give the components in the. same coordinate system of a new vector 

which was a rotation of the ~riginal vector. 

The direction cosine matrix represents the relationship of the 

components of the same' vector as. expressed in two different coordinate sys­

tems, one rotated relative to the other. If the local system is described as 

have been rotated an angle e about an axis p from the reference, then 

2.3.4 

D7 = R = p.p.T -t cose (I-_p_;..7) +sinS ;l-® (2. 63) 

Time Derivative Relation Between Quaternions and Direction 

Cosine Matrix 

Relationships are established between the time derivative of the 

direction cosine matrix and angular velocity which is then related to the time 

derivative of the quaternion4 As previously established, a rotation of a vector 

b to a vector · b 
1 

is the following: 

b I= DT(t) b at time t. 

At a time later t-t.L>. 

II T 
h = /) (t +.d) h (2 .6~) 

Then it is possible 'to write 

II I 
h = R (A.) b using the rotation operator. 
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Combining these results in 

b II- R(t::.)DT (t:)b .. = DT(t +Ll) b' (2.65) 

therefore from continuity 

D7 (t-rLJ.) = R(Ll) D7(t) 

or 
D(t+LJ.) = D{t) R 7(c.) (2 .66) 

Writing the derivative . D (t:) as D(t) = bnt [ D(T:+A)- D(t) J 
A-o A 

D(t)= ..£, [D{t)(RT(t::.)-1)]'· 
A-0 · A 

Then 

D (t) = A~O [ D(t){ P.P. T + CO~ ~(A)(~ -_,up. T}- Sih. e(A)_p. l8J -I)J 
(2 .67) 

Using L'Hospitals rule 

o-'tt:J bttJ = -:; )1. ® = - e ...a® (2. 68) 

Interpret p as the instantaneous axis of rotation and e 
as the angular time derivative. Thus the vector e_p defined in Equation (2.68) 

-1' . . .. 
is D w, where w is the angular velocity in the local reference system 

associated with D. From the matrix identity 

(Ab) €) (AC) ::: det (A) (AT) -l b@ C 

we have (D- 1w)@ (D- 1C) = D-l· (w(g)C) o~. (D- 1w)®D-l ~.D-l w@. 

Equation 2.68 may be rewritten as 

·-1 ·-1 -1 1.::'1·-1 
DO = -DD = -D (D w) ~D . 

-1 
= -DD w ® hence 

·-1 -1 rv\ 
D = D w~ 

26 

(2. 68a) 



In quaternion notation, using q instead of R, 

D =~*Do tt (2. 69) 

where the quaternion is defined to operate on the column vectors of the D 

matrix, D0 is the initial value of D, 

and r;*~ =' 
1 (o) = 1 

Differentiating equation (2.69) with respect to time, yields 

• . * * • 
D = ? D0 1 + ~ Do fj 

= 1* '/D + /)t/'t 
= -2 (7,. ~) @ D 

since {"{and- ?*fis a vector. This results the relationship 

;J.r-*f·=~ 
or 

f = ~t.)h 
(2. 70) 

. More explicitly, write q as 

0 -~, ·-GJL - "'.J 'Jo 

tcJ_, 0 W'.J - CcJ.t ljt 
• I I ) =i, . 'f = z 

0 tu.,. ~~-~z.. -(,)3 

(2. 71) 
tu~ tcJ.~,.. ~(.c), a J \ ~3 

where lA) T E. C4J,. • ~. w,J) 
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which has the characteristic equation 

and double roots 

and 

2 f )2. ('A +lj (,)•lcJ =0 

.,. 
{. 

~t, = -z I w I 
.(\ 

/\2.= -~ /wl 
.z. 2. 

Note that T =It I. The projections are given by 

and 

1 
E = z ?., ~- ~] 
EA = I-f"~ 

2. "'1 

If T is a constant, equation(2. 7Ilhas a solution 

~ {-t) = e T-t 7- (a) 

where 

.. e Tt: = (c.os ~ / w I t) I + 

Therefore it is possible to write, 

5Ln~/wlt 

Yz lw/ 

~ (1:) = (cos f.% 1 w 1 t ) fj (a) + sin Yz /wIt q(o) 
Yz l'-'1 D 

and 

T ~(o) = j. (o) 

In particular, if 

rcoJ = 0) 
28 
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and 

then 

j(o) = T7- {o)= ~ ( ~) 
. . cui 

Cf{t:) = 

co.s~ I (Ill t-) 

si n(Yz (CJ J t) f1i 
si.n(h lw Jt) (l)i 

I c.~ I 

si. n(Yz. /cJ J t) ;:, 

In quaternion notation, we have 

1 = cos{!t /cult)+ (si.n~ /(All t)) /~I 

which represents a rotation of angle jc:J It about the axis~. 
. . . . Jwl 

(2. 76) 

(2. 77) 

2. 4 DETERMINATION OF YAW, PITCH AND ROLL ANGLES OR EULER Mr_r.LES FROM 
DIRECTION COSINE MATRIX ,. 

The angular orientation of the segments in the 3-D program are 

computed and maintained in terms of the direction cosine matrices. 

For input and output purposes, .it is convenient to express the 

direction cosi~e matrices in terms of three rotation angles, either yaw, 

pitch and roll, or the Euler angles, spin, nutation and precession. 
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2. 4. 1 Computation of Yaw, Pitch and Roll 

A direction cosine matrix can be computed as the product of 

three successive rotations about the coordinate axes (see Figure 2. 7). This 

product can be expressed as D = Tx_(r) Ty (p) Tz(y), or in detail 

D= ~ 
0 

si:~ t~sp 0 -sinJ [cosy siny 

cosr 1 0 . 
s~ny cosy 

-sinr cosr amp 0 cosp 0 

3 2 1 

where in the above matrix product 

1 - represents a yaw around the z axis, T (y) 
z 

2 - represents a pitch about the resultant y axis, T (p) . y 
3 - represents a roll about the resultant x axis, T {r). 

X 

' The complete matrix is given below: 

D = 

cosp cosy 

(
-siny cosr \ 
+s inr sinp cosy) 

' . . ) +stny smr . 
+cosr sinp cosy 

cosp siny 

{cosy cosr ) 
\+sinr sinp s iny 

(
- sinr cosy ) 
+cosr sinp siny 

We have tr(D) =· 1 + 2 cos 6, (Section 2.31). 

(cos y/2 cos p/2 cos r/2 + sin y/2 sin p/2 sin r/2)
2 

30 

-sinp 

cosp sinr 

cosp cosr 

2 = cos 0/2 
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The direction cosine matrix defining the same orientation is: 

.D = ( di.} . for i and j = 1 to 3 
J 

The present routine computes yaw, pitch and roll angles with the relationships 

-t/')2) . -1/d_) :~/ci2~) 
Y= ta.n ( a.z1 J ,P= -~t.n f '~" r = ta.n ( (;{ 33 (2. 78) 

Application of express ions (2. 78) provide excellent re:;u1 ts except 

in regions approaching /)=:!;, (cosp-+o) . Additional relationships have been 

derived which may alleviate problems in this special region. 

hence if 

we have 

and if 

d2 z r d3.r. = cas(y-r) (.1-rst"np) 
- d:z.t r- d 3 2. = sin (y-z) ( 1 r sin p) 

d 22 - d31 = cos(y+r)(l- sinp) 

d21 f d3 z ~-sin (yn) ~-sinp) 

sinp•1 

y-r .. ta.n-1 r--d:z.r+ d,z) 
· · ct:~2. t- cL 31 ' 

st.n ,P= -t ·-

!1 -r t = t ci. n -11!_, -c/.3 2.- ) 

d2Z -d3.l 

At these points (when cos p=O, s~n p,;..± 1) it is impossible to 

distinguish between 'yaw and roll hence some arbitrary decision must be made 

unless further information (such as memory of last point) is available. 

2. 4. 2 Euler Angles: Spin, Nutation and Precession 

In a manner similar to the above the Euler angles may be 

obtained from the direction cosine matrnc. The conventional notation ·as used· 

in Reference 11 is 

D ... TJ(v) T1((9)T;(tl) 
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wher.e . y , s. and ~ are termed the spin, nutation and precession angles, 

respectively. ·rn particular the direction cosine matrix is expanded in the 

following manner and is illustrated in Figure (2.8:) 

[cos~ sh v n [~ 0 s~neJ los~ sin t/> 

~sin{f' cos (II coss -~in¢1 cosf/J 

0 -sine coss 0 

when multiplied yield. 

cos 'f1 cos </J cos" sinq) sin v sine 

-sin<; cos 6 sin 9 +sin 'I' coss cos(> 

D = I 
-sin 'fJ cost; -sin 'I' sin ¢1 cos~ sine! 

-cos 1f1 COS8 sinp +cos II' cos 8 cost/> 

sine sin s6 -sin e cos <P cose 

As before the Euler angles may be computed by 

e = cos-' ( d,3) ) _, ( dr~/ ) 
'I'"' tan / dz!J , if>= ta.n _, ( d51-d3z) 

in almost all cases (i.e., e ~ 0 , or B.\ 7r ) • 

For the special cases of e = 0 or 7.r the following relation­

ships may be used. 

e-= o 

f.t/+¢ ... -l:o.h -' ( a,z - dzt ) 
~~ + d~2 

¢-<fJ-= 
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Again, for these special cases it is impos~ible to distinguish between the 

spin and precession. An arbitrary decision could be made such as setting 

~ = 0 and computing ; from the above table. An alternate solution is to 

use additional information such as memory of the last angle values to·alleviate 

the problem. 
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SECTION 3 

VECTOR EXPONENTIAL INTEGRATOR 

3.1 INTRODUCTION 

In large scale simulations, such as the Calspan Three-Dimensional 

Crash Victim Simulation computer program, where the amount of computer time 

can become overly excessive to produce integration results to a desired degree 

of accuracy, it becomes very desirable to determine those integration techniques 

that are capable of producing the best integration accuracy for a minimum 

expenditure of computer time. Throughout the development of the CVS, Calspan 

has been continually investigating different integration techniques to achieve 

these goals. 

A new integrator, called the Vector Exponential Integrator, has 

been incorporated into CVS-IV that duplicated results obtained with the CVS-III 

integrator but required only about 10% of the computer time for a test case 

where the CVS-III integration control parameters to achieve comparable results 

on IBM and CDC computers were determined by NHTSA personnel. Other studies at 

Calspan (Sections 3.4 and 3.5) indicate that, for the same amount of computer 

time, the accuracy of integration is significantly improved with the new 

integrator. 

3.2 . MATHEMATICAL FORMULATION OF THE INTEGRATION PROCEDURE 

To describe the procedure used by this integrator, consider the first 

order differential equation 

• 
x = f(x, · t) (3.1) 
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The solution of equation 3.1 may be written as 

t 

x(t) = x(O) +I ea(t-T) [f(x(T),T)-a(x(T)-x(O))]dT 
0 

where a is a constant to be determined. 

Assume that f may be approximated by 

• 2 
x(t) = f(x(t),t) = ax(t) + a0 + a 1t + a2t 

where a, a
0

, a1 and a2 are parameters to be· determined. We then have 

t 

f a(t-T) 2 x(t) = x(O) + e [ax(O) + a0 + a1T + a2T ]dT 
0 . 

or 

x(t) 2 3 = x(O) + (ax(O)+a0)t e
0

(t) + a1t e1(t) + a2t e2(t) 

where 

at e
0 
(t) = Ce -1) I (at) + 1 as at + 0 

at e1(t) = (e
0 

-1)/(at) + 1/2 as at+ 0 

at e2(t) = (2e1 -1)/(at) + 1/3 as at + 0 

(The presence of the exponential function is the reason for the name 

exponential integrator,) 

(3.2) 

(3. 3) 

. (3. 4) 

(3. 5) 

The behavior of the integrator is determined by the method used.for 

determining the four parameters, a, a0, a1 and a2. In the latest version, the 

integrator operates in two modes, a reset mode and a memory mode. In both 

modes the parameters are selected to fit the computed derivatives at t = 0, 
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the beginning of an integration interval, Hence we may rewrite equation 3,3 

as 

• x(t) = a(x(t) 
• 2 

x(O)) + x(O) + a
1
t + a2t (3 .6) 

In the memory mode, when a successful integration step has been 

completed over a time interval h, t + h is substituted for t, so that t = 0 

is always the start of a new time interval. This yields 

• 2 
x(t+h) = a(x(t+h) - x(h)) + (a

1 
+ 2a2h)t + a

2
t (3. 7) 

• 2 
+ a(x(h) - x(O)) + x(O) + a

1
h + a2h 

The functions are then redefined so that the form of equation 3.6 is preserved, 

where 

new a
1 

= a
1 

+ 2a2h 

new a2 = a2 

new 
• 
x(O) = • • 2 

old x(h) is used in place of a(x(h)-x(O))+x(O)+a
1
h+a

2
h 

new. x(t) = old x(t+h) 

These values are used to estimate the value of x(t) at the first half 

step of the next interval, i.e., when t = h/2. In the reset mode, the parameters 

a, a
1 

and a2 are set to zero. 
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3.2.1 Computational Procedure 

The integrator uses a procedure similar to that used by a basic 

Runge-Kutta with the steps as follows: 

Step 1: 

Step 2: 

First midpoint calculation at t = h/2. 

a) x(h/2) is evaluated using equation 3.5 . 

• 
b) x(h/2) is evaluated by calling Subroutine PDAUX. 

c) The parameter a is unchanged, 

d) In the memory mode, the parameters a1 and a2 are modified so 

that the fit for the derivat"ive is exact at t = 0 and is least 

squares fitted to the values of the derivative at the beginning 

and middle of the previous interval and to the value just 

determined. 

• 
e) ~n the reset mode, a1 is set to give a linear fit to x(O) and 

x(h/2) with a = a2 = 0. 

Second mid-point calculation at t = h/2. 

a) x(h/2) is evaluated using equation 3.5 . 

• 
b) x(h/2) is evaluated by a call to Subroutine PDAUX. 

c) The parameter a is updated. 

d) In the memory mode, parameters a
1 

and a2 are computed to fit 

the values of the derivatives at t = 0, t = previous mid-point 

and the average value of the derivatives obtained in this and 

the previous step. 
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Step 3: 

Step 4: 

e) In the reset mode, the parameter, a1, is set to give a linear 

fit to the value at t = 0 and the average value at t = h/2. 

First end point calculation at t = h, 

a) x(h) is evaluated using equation 3.5 . 

• 
b) x(h) is evaluated by a call to Subroutine PDAUX. 

c) The parameter a is unchanged. 

d) In both modes, the parameters a1 and a2 are computed to fit 

the value at t = 0, the average at t = h/2 and the value at 

t = h just computed, 

Second end point calculation at t = h, 

a) x(h) is evaluated using equation·3.5 . 

• 
b) x(h) is evaluated by a call to Subroutine PDAUX. 

c) The parameter a is updated. 

d) In both modes, the parameters a
1 

and a2 are evaluated as they 

were in Step 3d. 

e) Tests for convergence (to be described later) are performed. 

If. the convergence test passes, the integrator has successfully 

completed a step and we proceed to the substitution t + t + h 

as explained previously. If the integrator has successfully 

completed three consecutive steps for the same value of h, the 

value of h is doubled but is limited to the input parameter h max 
Control is then returned to Step 1 . 
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Step 5: 

f) If the convergence test has failed and if the specified 

number of iterations of Steps 4 and 5 have not been made 

(as controlled by the input parameter NDINT), control is 

then passed to Step 5. 

g) If the convergence test has failed and the specified (NDINT) number 

of iterations have been made, the step size h is halved and the 

process is repeated by returning to Step 1. However, if h is 

already less than the allowed minimum step size (as controlled 

by the input parameter h. ), the integration test is considered m1n 
successful and the t + t. + h substitution is made and control is 

passed to Step 1, 

Additional calculation at mid-point, t = h/2. 

a) x(h/2) is evaluated using equation 3.5 . 

• 
b) x(h/2) is evaluated by a call to Subroutine PDAUX. 

c) The parameter a is updated .. 

d) In both modes, the parameters a
1 

and a2 are evaluated to fit 

exactly at t = 0, the last value.at t = hand the new value 

at t = h/2 just computed. 

Step 4 is then repeated except that the value just computed at 
• t = h/2 is used for x(h/2). Where the standard Runge-Kutta method evaluates 

functions only at t = 0 (or end of previous step), t = h/2, t = h/2 and t = h, 

the new integrator now tests for convergence, and revaluates t = h/2 and t = h 

for NDINT iterations if the convergence test fails. However, the convergence 

test may pass at any t = h evaluation. Although it seems that increasing 

NDINT may cause extra functional evaluations and hence expend additional 

computer time; if the extra functional evaluation can reduce the error and 

cause the convergence test to now'pass, this may prove to be more efficient 
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than the additional functional evaluations made necessary by halving the step 

size. The sequence of functional evaluations is summarized in Table 3.1. 

The integrator treats each variable separately by the preceeding 

process. There.are two exceptions to this, one is the determination of the 

value of a and the other is the translation of t in the parameters associated 

with the quaternions, 

3.2.2 Determination of the Value of a 

The variables are treated in their three component vector form 

x and I, the same value of a is used for each of the three components of the 

vector, but a different a is evaluated for each vector. This is the reason 

for the name Vector Exponential Integrator. 

Let 

ICt) ,. a CxCt) 
- - - . - 2 
x(O)) + x(O) + a1t + a 2t (3. 8) 

be the vector form of equation 3.5. If two different determinations of I(t) 

and x(t) are made at the same time point t, we have" 

I
1

Ct) =a cx
1 

(t) - - - - 2 x(O)) + x(O) + a1t + a2t 

I
2

Ct) ,. a cx
2

Ct) - - - - 2 x(O)) + x(O) + a1t + a2t 

Subtraction yields 

I 2 Ct) I
1 
(t) ,. a cx

2 
(t) x

1
(t)) (3.9) 
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""" N 

Table 3.1 SUMMARY OF INTEGRATION STEPS 

Step 
No. 

1 

2 

3 

4 

5 

Time Time Point Used to 

Point Compute a1 and a2 

t = h/2 t = 0 1 least square fit 
thru t = -h , -h /2, h/2 s s 

t = h/2 t = -h /2, o, h/2 s 

t = h t = 0, h/2, h 

t = h t = o, h/2, h 

t = h/2 t = 0, h/2, h 

h = current step size 

h = previous step size 
s 

Exponential 
Factor 

same a 

new a 

same a 

new a 

new a 

Sequence of steps: 1, 2, 3, 4(1) I 5, 4(2)' 5, ----' 4 (NDINT) 

Time Point 
Data Saved 

middle point, h/2 

average of middle 
points 

end point, h 

end point, h 

middle point, h/2 



If this process is done at several time points, we may make a least 

square determination of a by 

a=· 
E (x2 ct J- x-

1
ct JJ·(f2ct J- i

1
ct JJ n n n n n 

I: lx2 (tn) - xl (tn) 12 
n 

u 
= v (3. 10) 

The values of the numerator and denominator are carried separately as U and V 

so that they may be updated when new data points are obtained. In the memory 

mode, when t is translated by t = t + h, U and V are decreased by a memory 

factor which depends exponentially on the value of the step size h just 

completed. In the reset mode, both U and V are initialized to zero. 

3.2.3 Integrator Convergence Tests 

The Vector Exponential Integrator obtains two sets of derivatives 

in vector form. One set, considered to be the computed value and denoted by 

x (t), is obtained by a call to Subroutine PDAUX. The other, considered to c 
be the estimated value and denoted by x (t), is evaluated from the functional e 
form of equation 3.8 using the latest values of the parameters (repeated for 

convenience). 

* (t) "' a(x(t) e 
- - - - 2 x(O)) + i(O) + a1t + a2t (3. 11) 

If a is large, this estimated value is very sensitive to perturbations 

of X:(t). Consider the error measure e
2 defined by 

2 
·€ = 

2 
lx (t) + a5- 1 (t)l e c 

lic(t) 12 
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where 

I = perturbation of x(t) 

A = arbitrary constant weight (present version assumes A = 1) 

Equation 3.12 is minimized when 

0 = 
a ci - I ) ·c e 

(3 .13) 

a 
2 

+ A I I 1
2 
I I xl

2 
c 

and has the value 
J 

2 
e: . mJ.n 

lie 
= 

IIcl2 

-I 12 
e 

(3.14) 
21-12 + a X /A 

Note that when a
2/A = 0, this reduces to a relative squared error of the 

derivative as was tested in the previous integrator in CVS-III. 

For each vector variable which is integrated, the user supplies three 

levels of test numbers (T1, r 2 and r 3) that are used by the Vector Exponential 

Integrator to test for integrator convergence. 

The procedure to test for integrator convergence is as follows: 

a. If the magnitude test r 1 is zero, no further testing is 

performed and the test is considered passed for this vector 

variable. 

b. If r 1 ~ 0 and if· IIcl
2 ~ r 1

2, no further testing is performed 

and the test is considered passed for this vector variable. 
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1- - 12 2 c. If the absolute error test T2 f: 0 and , x -x < T2 , 
c e -

· no further testing is performed for this vector variable and 

the test is considered to have passed. 

d. If €
2 

. > T
3

2
, the relative error test parameter, the m1n 

integrator convergence test has failed; otherwise this vector 

variable has passed and the procedure is then repeated for all 

vector variables. 

It should be noted that for an integration step to be considered as 

successful, all vector variables mu~t pass the above sequence of tests; 

whereas any single vector variable failing Step d will cause the integration 

step to fail. 

3.3 ANALYTICA~SOLUTION OF FREE BODY ANGULAR MOTION 

The angular momentum vector in inertial reference of a single segment 

is given by the matrix relation 

where 

-1 
h = D ~w 

D is the direction cosine matrix 

~is the inertia matrix (tensor), and 

w is a vector representing the angular velocity 

about the principal ·axes in local reference. 
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If the segment has no external torques acting on it, then h is a 

constant and the 'equation. of motion is obtained by taking the time derivative 

of equation 3.15. 

• -1· -1 • -1 r.;., 
h = (D ~w) = D ~w + D w~~w = 0 (3.16) 

Equation 3.16 can be solved for the angular acceleration vector 

• 1 
w = ... ~-:- w@ ~w (3 .17) 

It can be shown that 

w • ~w = 0 (3.18) 

hence 

w • ~w = 2E (3.19) 

which is a constant where E is the energy. Also, 

(~w) • (~w) = h•h is constant (3. 20) 

If~ is a diagonal matrix, equation 3.17may be written as 

• 
wl = w2w3/al (3.21) 

• 
w2 = w3wl/a2 

• 
·. w3 = wlwzia3 

where al = ¢/ (~2 - ~3) 

a2 = ~z~ (~3 - ~1) 

and a3 = ~3/(~1 - ~2) 

46 



Case I: 

The following cases may then be considered: 

The segment has equal principal moments of inertia, i.e., 

~1 = ~2 = ~3" 

• 
In this case, equation 3.17 becomesw = O, hence, w is a constant. 

The instantaneous angular position is described by the quaternion, q, where 

q = cos l.!El.! 2 + 
w 

TWT sin led! . 2 

and the direction cosine matrix by 

D = (cos jwjt) I + (1 - cos lwlt) ~- (sin jwjt) ~ 
w·w 1w1 

Case II: The segment has two equal principal moments of inertia, i.e., 

~1 = ~2 f. ~3. 

• • 

(3. 22) 

(3.23) 

In this case, since w3 = 0, w1 in equation 3.21may be differentiated 

to yield 

.. • 
wl = w2w3/al = w w /a a 1 3 1 2 (3.24) 

The solution is 

w2 w3 
sin nt 

wl = wl cos nt + 
. 0 0 

0 al n 

w3 wl 

w2 .= w2 cos nt·+ 0 5 sin nt 

0 a2 n (3.25) 

w = w 3 3 
0 
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where (~ \'2 
-al a2 } = loo3 (~3- ~1)/~11 

0 
(3. 26) n = 

In terms of the Euler angles(!), $, 9, ·~ (precession, nutation and 

spin), if we let 

~ 1 oo 1 /lhl = sin~ sin 9 

~2002/lhl = cos ~ sine (3. 27) 

and ~3oo3/lhl = cos e 

the momentum vector, h, will be aligned with the inertial z axis; the nutation 

angle, 9, will be constant; and the spin angle, ~. may be computed directly as 

~ = 
ool -1 -tan oo

2 

The precession angle, $, is determined by the relation 

• 
$ sin 9 = oo

1 
sin·~+ oo2 cos~ ill sine = ~ 

1 

Therefore, 

• I hi/~ $ = 1 

is a constant, and 

$ = $ + clhl 1 ~ )t 
0 1 

(l) See Section 2.4. 
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Case III: The principal moments of inertia are all unequal. 

It is no restriction to assume that ~l < ~2 < ~3 . Equation3.21 may 
then be written as 

' • • • 
alwlwl = a2w2w2 = a3w3w3 = wlw2w3 

Integrating equation 3.32 yields 

2 2 
al (wl -wl ) = 

0 

2 2 
a2(w2 -w2 ) = 

0 

2 2 
a3(w3 -w3 ) 
. 0 

(3.32) 

c:;. 33) 

w1 and w3 may be expressed as functions of w2 and substitution then yields 

• 2 2 2 2 2 2 1/2 a2w2 = {[-a2(w2 -w2 )-a1w1 ][-a2Cw2 -w2 )-a3w3 ]/a1a} 
0 0 0 . 0 

3 

If we let 

. . . ( 2 2 2 2) m1n = m1n1mum a2w2 -a1w1 , a2w2 -a3w3 
0 0 0 0 

max = maximum (a2w2 
2 2 2 2 

-alwl , a2w2 -a3w3 ) 
0 0 0 0 

w2 = y ~ min/a2 

and m = min/max 

then equation 3.34 may be written as 

• r 
y = ·~ 

.f 
! 

max 
ala2a3 

.I 2 2 
"' (1-y ) (1-my ) 
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Now by defining 

y 

u = f dr 
~ (1-/) (1-m/) 

0 

as an Elliptic Integral of the First Kind, and 

y = sn(u) 

as the corresponding Jacobian Elliptic Function(2), one obtains 

~ (I) = 
2 2 

Further, if min = a2w2 
0 

2 
(1)1 

2 
(1)3 

= 

= 

2 

sn ( [t-t ] 
0 

max -1 ~ 
al a2a3 + sn [w2 ~ ]) 

0 
ml.n 

alwl 
0 

2 
, then 

min ) cn2(u) 
( al 

2 max ) dn (u) 
( a3 

or, if min = a2w2 
0 

2 2 
a3w3 then 

0 

2 ( max ) dn2 (u) (1)1 = -
al 

2 ( min ) cn2 (u) (1)2 = -
a3 

(2)Reference 10. 
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where u is the argument of the sn function used for w2 in equation 3.40. Care 

must be taken in selecting the signs of the square roots which must be chosen 
• 

to yield the proper signs for w and w. Also note that 

2 2 
sn (u) + en (u) = 1 (3. 44) 

dn2 (u) + m sn
2

(u) = 1 

The angular position may be determined in a manner similar to 

equation 3.27, namely 

(3.45) 

(3.46) 

• 
Note that in the general case, e and $ are not constant as they were when 

~1 = ~2~ 

Further substitution into equation 3.46 yields 

• 
cp = lhl 

= lhl 

2 
(~3-~2) + (~2-~1) k sn (u) 

2 
~1(~3-~2) + ~3(~2-~1) k sn (u) 

[ 
-1 

~3 + 

~ -1 
1 -

1 + nk 
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where 

4>3 (4>2-4>1) 
n = 

4>1 (4>3-4>2) 

k = 1 if min = a2w2 
2 2 

and - alwl 
0 0 

m if min = a2w2 
2 2 = - a3w3 

0 0 

This is now in a form that can be_ expressed in terms of Elliptic Integrals 

of the Third Kind which are defined as 

where 

u 

1r(n; ulm) = f . 2 -1 
[1 - n sn (w)] dw 

0 

The solution of equation 3.47 may be written as 

t-t 
~ = ~ + lhl ~ + C [1r(nk; ulm) - 1r(nk; u lm)] 

0 ... 3 0 

c = lhl (4>1-1 4> -1 
3 ) 

-1 . f u = sn (w2 ~ a2/min ) 

ala2a3 
max 

-1 ~-....,...--
uo = sn (w

20 
~ a2/min ) 
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3.4 SIMULATION OF FREE BODY ANGULAR MOTION 

Users of CVS-III have experienced difficulty in those cases that 

. involve rapid angular motion of ~ndividual body segments, Examples of this 

are (1) the basic test case Calspan has supplied on previous program tapes when 

the feet make initial contacts with the floorboard and toeboard, and (2) pedestrian 

runs by Chrysler Corporation for the RSV program when the hands make initial · 

contact with the hood. In both cases, these were small. body extremities making 

hard contacts near the beginning of the simulation, Attempts to control the 

resulting rapid angular motion by"varying the input of the integrator control 

parameters forced the integrator to the specified minimum time step intervals, 

resulting in excessive computer CPU time, and produced questionable results. 

It became suspect that the integrating techniques used by CVS-III 

were either incorrect or incapable .of properly integrating angular motion. 

It was decided to run computer simulations of a single rotati~~ segment for 

a case where the exact analytical solution is known to study the accuracy of 

the integration of angular motion produced by the new integrator. The 

analytical solution of free body angular motion is given in Section 3.3. 

3.4 .. 1 Computer Simulation Inputs· 

The basic inputs for the test case were given by: 

(1) One segment and zero joints (Card B.l). 

(2) Principal moments of inertia (Card 8.2), 

~x• ~y and ~z (or ~ 1 • ~2 and ~3 ) = l, 2 and 3. 
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(3) The input yaw, pitch and roll (Card G.3), 

-1 2 
y = tan :T = 116.565051 deg. 

-1 - rDT.r p = sin ~ 5/14 = 36.6992252 deg. 

r = 0 deg. 

These were chosen so that the momentum vector would coincide with 
. . . 

the Z axis. Note that CVS program normally computes the initial direction 

cosine matrix by reversing the order of the input rotation angles (yaw, pitch, 
and roll), i.e., 

D = D D D 
y p r 

whereas for output purposes, the rotation angles are defined by 

D = D D D . 
r p Y 

(4) The initial angular velocities (Card G.3), 

wx, wy and wz (or w1, w2 and w3) = 36799.3780 deg/sec. 

These were chosen such that the frequency of the components of angular 

velocity would be 100 cycles per second, the period of one cycle to be exactly 

10 msec. This value is obtained in radians/sec by 

w = 200 ~ K (m) 

where K (m) is the complete elliptic integral of the first kind form= 1/2. 

(5) There are no specified contacts and the segment is falling 

under the influence of g (Card A.3). 
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3.4. 2 Additional Simulation Outuuts 

In addition the output routine was modified to give the following 

outputs for every successful integration step. 

(1) The segment angular velocity was changed from rev/sec in 

vehicle reference to rad/sec in· local reference. 

(2) The components and magnitude of the momentum vector, h, 

given by 

(~w) • (~w) = h·h 

This should remain constant, with the x and y components equal 

to zero. 

(3) The constant ~ , where E is the energy, given by 

w· (~w) = 2E 

(4) In addition to the angular displacements, y, p and r, 

computed from 

D = D D D 
r p y 

the Euler angles, ~. e and $, were printed in degrees from 

D = T (~) T (8) T ($) 
Z X Z 

; 1 

: f 
I· 

·~ 

i 
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(S) The following angles, in degrees, are computed as follows 

and theoretically should equal the indicated rotation 

angles. 

p* = sin -1 

r* = tan -1 

0* = cos -1 

-1 
<P* = tan 

-~1 00 1 

~ 

~2002 

~3003 

~300 3 
Thl 

~100 1 

~2 002 

= p 

= r 

= e 

= <P 

In addition, the other two rotation angles, y and ~. can be compared 

to Jacobian elliptic functions, sn(u), cn(u) and dn(u), but these comparisons 

were not made. 

3.4.3 Comparison Measures 

The resulting time history outputs presented many items whose 

accuracy could be determined to study the accuracy of the integrating techniques 

used. They include: 

(1) The x, y and z components of linear acceleration of the 

segment e.g. should be in the ratio of 1:2:3 at the half­

period (every 5 msec) time points. The resultant should 

remain at a constant 1 g for all points. 

(2) The z component of linear acceleration at the points (1, 2, 3) 

and (0, 0, 1) appeared to remain constant with small 

fluctuations. Also, the resultant linear velocity of the 

point (0, 0, 1) appeared to remain constant with small 
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fluctuations. These results were unexpected and have not 

been studied. 

(3) The components of segment angular acceleration (rev/sec2) in 

local reference should follow known elliptic functions with a 

fixed half-period (5 msec). Their magnitudes are quite large 1 

~ 106
1 and the deviation from the known values at the 

half-period time points was one of the measures used to 

study the accuracy of.the various simulations that were run. 

(4) The magnitude of the x and y components of the momentum 

vector h should be zero, and the deviation from zero is 

a meaningful comparison measure. 

(5) The values of lhl and E should remain constant and their 

deviation from the known constant value can be used as 

comparison measures, 

(6) The deviations of the computed values of p*, r*, 0*, and 

~* from the printed values of p, r, 0 and ~ at the same 

time points are also useful comparison measures. It was 

difficult to determine, however, if deviations were caused 

by inaccuracies in the direction cosine matrix or in the 

angular velocities. 
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3.4. 4 Simulation Input Parameters 

Several simulations were run for 25 msec, 2 1/2 full cycles, 

varying the following parameters. 

(1) Integrating procedure used. 

(2) 

(3) 

(4) 

a. New Vector Exponential Integrator, 

b. Previous integrator of CVS-III. 

c. Standard Runge-Kutta integrator. 

Value of the maximum step size, h max 

Value of the initial step size, h . 
0 

Value of the relative error test for angular acceleration. 

A summary of the various simulations is presented in Table 3.2. 

3.5 RESULTS AND CONCLUSIONS 

A study of Table 3.2 and the finer detail given by the simulation 

outputs show the following results and conclusions. 

(1) The new Vector Exponential Integrator produces very accurate 

results of free body angular motion, The resulting accuracy 

is 50-1000 times better than that produced by the previous 

integrator of CVS-III, using the same integrator control 

parameters and approximately the same amount of computer 

CPU time (as measured by the number of calls to DAUX). In 

order to produce the same degree of accuracy with the CVS-III 

integrator, it would be necessary to tighten the relative error 

controls which would increase the amount of computer CPU time. 
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(J1 

\0 
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1-t 
Q) 

~ 
::l z 
~ 
::l 

0:: 

8045 

6688 

4393 

1176 

5816 

4376 

6793 

3717 

6190 

6502 

1-t 
0 V) 

~ p. 
C1l Q) 
1-t ~ 
bO tl) 
Q) 
~ . 
~ 0 

H z 

CVS-III 25 

R-K so 
Vee. Exp, 25 

Vee. Exp. 25 

Vee, Exp. 5 

Vee, Exp. 25 

Vee. Exp. 25 

Vee. Exp. 25 

Vee. Exp. 5 

Vee. Exp. 5 

Table 3.2 

·SUMMARY OF COMPUTER SIMULATIONS OF FREE BODY ANGULAR MOTION 

V) V) >-p. ~~ ~ 
~ Q) 0 ~ .. ~ 
V) . ~ •o-i •o-i >< .c ,...-.C1l ,......~ 

Q.)..-1 tl) >< ~ 0 d@~ o'.O ~ 
E-o Q) ::::> C1lC.. 4-l .. '-' V) '-'C1l 

u ~ -< 1-t 0 1-t ~ ~ 
1-t u 0 Cl ,...-.Q.)"C 0 ~ 0 ~ V) 
O<( •o-i o\0 r-i 0 Q) 4-l ~ ou 0 ~ 
1-t ~ 0 '-' Q) •o-i "COO •o-i •o-i 0 ,...... 1-t 1-t C1l ~ u 1-t ::l Q) ~ s ~u 

u Ill C1l 1-t 1-t u Q) ~Vl> C1l 0 C1l ,...... Q) ,...... r-i bO V) o<x:c.. •o-i ~ •o-i 1-t •o-i s 
u V) u Q) ::l Q) r-i 1-t I ~ ~ s >J:I.. > 0 
Q) ~ Q) >bO ~ r-i 1-tl-tf.H bOQ.>::l Q) Q) 1-t 
V) '-' V) •o-i ~ ~ C1l lllc1lr-i C1l~~ o- 04-l 
~ ~ ~-< H u r-ic1l ~0~ ,.CQ.) Q) 
'-' >< '-' C1l >< 6'o :I: .p.Q.) ·-::l • Ill ::l 

C1l r-i 1-t >< s s >< r-i >< r-i 
E-o .cs 0 Q) 0 0 0 C1l~~ C1l 0 0 C1l 4-l C1l C1l 4-l C1l 
Cl .c O::J:I.. z z ~<< ~u~ ~o:> ~o> 

1 1/2 1/8 10~3 56 317 11.6300 43,29 2.3570 2.9810 

1/2 1/2 1/2 --. 51 204 0.2138 -- 0.0286 0.0224 

1 1/4 1/16 10-3 105 417 0. 0323 . 0.96 0.0021 0.0025 
1. 1/4 1/8 10-3 103 411 0.0416 '0.99 0.0046 0.0051 

5 1/2 1/16 10-3 
58 259 0.0159 10.89 0.0079 0.0108 

1 1/2 1/16 10-3 58 259 0.0248 10.99 0.0092 0.0108 

1 1/2 1/8 10-3 
56 251 0.0259 10.95 0.0099 0.0114 

1 1/2 1/4 10-3 53 239 0.0979 9.78 0.0137 0.0146 

5 1/2 1/2 10-3 51 235 0.0414 8.04 0.0129 0.0178 

5 1/2 1/2 10-4 51 363 0.0078 0.79 0.0008 0.0006 



(2) 

(3) 

The variation of the input parameters, h and h , had max o 
small but inconclusive effects on the resulting accuracy with 

the new integrator. In some cases a maximum step size of 

1/2 msec produced better results than those of 1/4 msec. 

The most significant increase in simulation accuracy was 

achieved by decreasing the relative error test for angular 
-3 -4 acceleration from 10 and 10 . The resulting accuracy 

increased by factors of 6-30, using the largest values of h max 
and h tested, but required a 54% increase in computer CPU 

0 

time, It is believed that a further tightening of this input 

parameter would improve the accuracy even further, as long 

as the relative error can decrease rapidly to this test 

parameter for the NDINT (input number of maximum internal 

steps for each integration step) iterations. This appears to 

be true in our one segment simulation, but is not always true 

in a full scale simulation, If the relative error test is not 

satisfied after NDINT internal steps, the integrator fails 

for that time step, and the current integration time step is 

halved to try again. There were no such integrator failures. 

in all of these simulations for the one segment model. 

(4) A more detailed study of the individual simulations indicated 

that there are two sources of error in the integration results. 

They are: 

(a) A transient error seems to exist at the very first 

integration step. The new Vector Exponential Integrator 

has a built-in memory to integrate to the mid-point of 

the.next step, but this is zero at the start. This 

transient error may also be influenced by the accuracy 

of the input numbers, the inputs to the one segment model 

were supplied with nine significant figures. The error 

should be minimized by starting out with a small h
0

. 
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(b) A cumulative error buildup dependent on the number of 

integration steps. The individual errors are controlled 

by the relative error test. If a particular variable 

remains fairly constant, the cumulative error is limited 

by the number of integration steps times the relative 

error test times the magnitude of the variable. 

In the individual simulations, some of the actual errors 

followed a definite quadratic function behavior after 

5 msec, but not between 0 and 5 msec. It is believed that 

this was due to extra integration steps that are performed 

when h < h , which in some cases more than offsets o max 
the improvement in the transient error that exists at the 

beginning by taking a small h . 
0 

(5) Differences between simulation results obtained previously with 

the CVS-III and the new Vector Exponential Integrator are 

probably due to loose tests on the relative error for angular 

acceleration and the new Vector Exponential Integrator probably 

yields much more accurate results, 

(6) It must be realized that the angular velocities for the 

simulations listed in Table 3.2 are much larger than those one 

would normally expect in a full scale simulation. Also, the 

2 1/2 complete revolutions of a single segment, achieved here 

in 25 msec, is much larger than the rotations usually occurring 

in fuii scale simulations. we·· therefore do not think that. a 

relative error t.est of 10-4 is necessary under norm~.l conditions. 

The following integrator control parameters are reco~e.nded as 

a result of these and other studies. 

i 
j 

,',: .· .. 
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NDINT: 

NSTEPS: 

DT: 

h : 
0 

h max 

h . : m1n 

Relative 
Error 
Test: 

6 

As necessary to control length of simulation. 

An integral multiple of h max 

1/8 or 1/16 msec. 

1/2 or 1 msec but a power of 2 multiple of h . 
0 

Equal to h . 
0 

-2 10 for angular acceleration (all segments), 

10-3 for linear accelerations (reference segments 

only). 
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SECTION 4 

EQUATIONS OF MOTION OF A SET OF CONNECTED RIGID BODIES 

4.1 SEGMENT MOTION EQUATIONS 

This section presents the equations of motion of a set of rigid bodies 

using matrix notation which has a direct relation to the actual program code. 

In this analysis each of the segments is assumed to be a rigid body 

connected to another segment by means of a joint. As indicated in Figure 4.1 

only one joint is assumed present between any two segments. It is possible now 

to disconnect these segments into free bodies by supplying (for each segment 

in the appropriate direction) the forces and torques that exist at the joint. 

A diagram of this step is presented in Figure 4.2. In this form the equations 

of motion may be written separately and simply for each rigid body with a cor­

responding set of constraint equations which allow the computation of the forces 

and torques of constraint. By this method extension of the equations to .~Y 

number of segments linked in this way is a simple matter. 

Define the location of the center of gravity (e.g.) of the nth· segment 

in an inertial reference system byx~ denoting. 

xh =·(;: \ 
· zol 

coordinates in the inertial reference system. 

where ~~~ 1 Z0 are orthogonal 

Define a principal axis system fixed in the segment by ( i t 
Then denote 1?~ as the direction cosine matrix associated with segment n . 

Such that if {f) locates a point in the local system, and({} locates the same 

point in the inertial system then l?n. satisfies the following relationship: 
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(!) = ~n [(~)- Xn] (4 .1) 

or equivalently 

(!) r
(X - X0)J 

= j)n (fj - lJo) 

(z -z~ 
(4.2) 

Define also the k th external force acting on the nth segment by ~k • 

The point of application as indicated in Figure 4.2 isJOn* measured in the nth 

local system. 

Let f,J be the constraint force at joint j acting on segment n . This 

of course assumes the segment h is connected to another segment by joint j 

Due to the nature of the free body configuration assumed,· if segment his con­

nected to segment m by joint j then fn. acts on segment h and - fn. =fmJ. acts on 
J J . 

segment m. 

The·position of the e.g. of the nth segment isXn and the velocity 

of the e.g. is then Xn . Denote the mass of the nth segment to be M71 then 

the linear momentum is M11 X n . The dynamic equation of motion for the nth 

segment is then 

! {M77 Xn)=E: +Xfn. 
CLt K K j J (4 .3) 

where ,.(=-11 2. •••• , total· number of external forces acting on segment n and j =1)2; • 

the joints connected to segment n. 

Since the mass of each segment is constant with respect to time, this 

equation may be rewritten as 
M77 X71 =E ~ r-Z/77 k 'J 

This is the linear (translational) dynamic equation. 
(4 .4) 
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For development of the angular equation denote wn as the angular 

velocity vector of segmentn and ¢~as the inertia matrix about the e.g. of 

segmentn. The angular momentum of segment n about the e.g. is written as 

~n wn . Note that ¢nwn ·is in local reference so care must be used when 

taking the derivative. With this in mind, the angular dynamic equation in 

inertial system components is: 

d /n-~ z 
· dt 1 .vrz. ¢n.. ~n ) -...lJ~ Z Tor~ues (4.5) 

Now taking the derivative yields 

j;h-i¢n wn -r.JJn-.t¢n wn -r1J7/¢,., ~ =41 .E Tor~ues. 
. .n 

Note that <P is a constant property of the segment therefore 1 = 0. · n ~n 
• -1. -:t • -t • -:t 

Also note that .1J72 --..Vn ..l)n ..l)n. and .l)n. J)n =-wn @ , which is a matrix defined 

by equation (2.68.) The angular dynamic equation may be written as 

· . .Zhi
1 
(wn@} ~ wn -r .Pn. -:l¢n ~n = .J);/2 Torcju.e.s (4.6) 

Now the torques may be catalogued as follows: 

!Y'Z TolY{lL<S = Ef,;' fn K' !,; ~ 
'z~;: r~® r,J 

'· 

+ .Z ?:cons. 

r- Z ?:ex 

Rewriting equation (4.6) yields 

due to external forces 

due to forces of constraint 
at joint 

due to constraint torques 

due to external torques 

¢n ~n =-(wn fil}¢n.wn -rJ),.,__ f~~.t fnkf~krzp;/r:n?~ 
-r £ ?:'cons + E 'l'ex] 

(4.7) 
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4.2 CONNECTIVITY 

The connectivity of the model is described by a joint vector (array) 

JNT(j) which is interpreted as joint j connects segment JNT(j) to segment j+l. 

The use of this joint array limits the model to a "tree.structure", Figure.4.3. 

That is, noclosed paths can be found which leave a segment via a joint and 

return to the same segment through another joint. This also requires that a 

numbering system be used in which joint j is associated with segment j+l. 

This imposes no constraint on the tree structure. 

The program is so written that JNT(j)·may be zero, defining a null 

joint. This results in the capability of defining sets of disjoint segments. 

Segment 1 is always taken as a reference segment. For each joint j where 

JNT(j)=O segment j+l is the reference segment. For each such set of segments 

the identifying numbers must be sequential. The lowest numbered segment in each 

set is used as the reference. An example of this is the following: 

(1,2,3) (4) (5,6,7,8,9,10,11,12,13) 

where JNT(3) and JNT(4) are zero. Thus segments 1,2,3 would be treated as one 

set of connected rigid bodies with segment 1 as a reference. Segment 4 would 

be an isolated segment with 4 as a reference. Segments 5 through 13 would be 

·treated as.a connected set with segment 5 as a reference. 

The integrator integrates for the linear motion of the reference seg­

ments only. The linear position and velocities of the other segments are de­

termined by use of a chain algorithm (subroutine CHAIN.) 
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4.3 CONSTRAINT EQUATIONS 

Derivation of the additional equations required for solution 

of the system equations is presented in this section. The first two are 

constraints at the joints and arise from model considerations. For instance, 

at a joint the segments must have a point in common (linear position con­

straint) also the type of joints specified such as free, pinned, or locked 

require constraint equations (joint angular position constraint). The third 

equation pertains to other more general types of constraints such as a fixed 

distance between points on segments, or sliding or rolling motion of one 

segment over another segment or over a vehicle surface. 

The general procedure for applying a constraint between 

segments m and n is to introduce a constraint force q into the system of 

equations as: 

Mm xm-~ f,.,j -r ?r;= u:t m 

M77 ~-L. fn. - Ptt = U 1 k k n 

fPm ~m-L~~ rm)® fm. -rf.Jrt r.,}® Dm Pq=-lL2.m-.1 jJ J I. 

~ ~~-xJn;!rn \otn- U 1-n )® lJn P~-uzn-
"" kl ,f 

(4. 8) 

where the matrix* P depends on the type of constraint and q is determined 

by adding a constraint equation to the system of equations. The constraint 

equations are derived in following sections. 

*Note: In all cases P may be taken as the identity matrix or it may 

be chosen to impose symmetry of the equations where this is possible. 

These equations, along with the constraint equations, are referred to as the 

system equations. 

70 



4. 3. 1 Linear Position Constraint 

Consider the joint j connecting segment n=JNT(j) to segment 

m=j+l. Because it is assumed that the joint does not separate, the following 

expression 

X lJ.. -1r -x n -1. n! n lfj - n/· vm ·~~; 
(4. 9) 

holds for each joint. These equations can be used to calculate X n . the 

position of segment n, if lln, !Jm and X m are known. Differentiating equa­

tion (4.9) results in 

Xn + JJ~1. ( w n ® r~j )= Xm_ .;-.D.;,: (w ® r!it;) 
(4.10) 

noting that 'l:"'ry and 'Z"mj are constant in their local reference system. 

entiating equation (4.10) results in 

X.. v.-1 [· ~I •• _;-[·-. - / ~ 
nf n Lwn0rnj +;~n~(w"Q">t;)J=Xmf..Dm ul"J@rlfj't-wm®(wm®r...,j~ 

which relates the accelerations. Rearranging yields. 

Differ-

(4.11) 

Xn-Xm-.IJ;;'(rt~j ®. ~}i-JJ;_,1(r,j @~~:f);: [wm®(wm~~,j ~-_p;.t~"®(W"IDt;.;J] 
( 4. 12) 

Equation (4.12) is the linear joint position constraint 

equation 

4.3.2 Angular Joint Constraint 

Again consider joint j connecting segments n=JNT(j) and 

m=j+l. The free body method of describing the motion of connected rigid 

bodies require specification of the constraint torque at the joint. The 

particular equation defining this torque depends on the type of joint con- · 

sidered. 
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Consider the following two cases: .. 

CASE 1 Locked Joint 

The relative angular position remains constant thus 

the direction cosine matrices satisfy the equation 

C=JJ. 1J.. -.1. 
. m n ( 4. 13) 

where C is a constant matrix. 

Rearranging ..lJ. _;. c = .J)-~ m n 

Differentiating; .D~ (wn®)C=JJ;/(w~®) 

eliminating C yields j)~l ( wm. ®) .Dm_ =D.;/( wn ®)JJn 
. -

which implies 

n -.L · -]) -L 
.vm w m- n wn, as the velocity constraint • 

Differentiating and rearranging yields the acceleration constraint· as: 

-.I • -.t·· 
.J)n wn. - _l} w m= o ( 4. 14) 

CASE 2 Pinned Joint 

The segments are constrained to rotate about some 

pin axis which is fixed relative to each segment. Let hm Jhn be unit vectors 

defining the pin axis in'their respective coordinate· systems. Then the 

position constraint is 

_, /_ _, 
~ YJ 111 = D, h17 .- h 

( 4. 15) 
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where hm and h.n are constant and h is the pin axis 

in inertial reference. 

. or 

Differentiating yields the velocity constraint 

j)~1(wn ®)hn-j)~ (wm ®)hm 

..ZJ;/ (w n ® hn) =.lJ; (w m ®hm) 

(Note: when the matrix we operates on a vector, it is equivalent to the 

vector cross product ie (w fiJ)n= w @/).) This velocity constraint may be 

interpreted as specify~ng that the components of angular velocity perpen­

dicular to the pin must be. equal. That is 

or 
.D;;_1[ w n- h,Jhn. w12)} = .D:/z. (wmhm(~w,. w "")) 

{l-hh.) JJ;{_ W 71 = {l-hh.).JJ~1 wm 

(Note: h is a column vector, h• is h transpose [a row vector], hh· is a 

square matrix. ) 

Differentiating again yields the acceleration constraint 
n -.1 .• h .D-:t / h ) n-I - n -1 1. ) 

.Vn wn® n.r nwn®<Wn® n =.um 1wm®hmr-'7n ~m®<wm®hm 
which may be written as 

t. G.IJ. -1 • :ZJ-1 • 1 -:1 ~. . ; 71 -1 r J F/® n wn- m w~ =..Dn. w zz ®t w'n®hn -.vm · w·m ® wm ®hm 
Taking the dot product with h yields 

O=t7·[?..;1 w n ® (wn ®/;nJ-JJ.;,twm® wzn ~hmm)] 

= {w ·h. } 2- w • w -/ w • h } 2 ,t w • w n. n n n I' m m ·m 1n 

which may be written as. · 

w n· .w n-(w n ·hn) ~ w m. w m-(w m ·hm.)2. 

This is satisfied if the velocity constraint is satisfied. 

Taking the cross product with h yields 

-o@ [h@(..O;;' ~12. -..D:. wzzz.J}wn·hn .v-LWn ®A'Z-wm·hm.D~ Wm.®hm. 
which mav be written as 

(l-/Jh) (.JJ;/ Wn-.ZJ;_.!wm) = Wn· h7l.J)~l Wn@/J7Z- W m .!Jm.J)~ Wm ®hm 
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(Note: that we have used the matrix identity 1-IJ h·=-h® /J® which is valid 

when his a unit vector. ) In addition, we must impose the condition that the 

constraining torque have no co~ponent on the pin axis, that is. 

IJ·t=O 
This may be put in matrix form as IJ IJ·t=O and added to the above con-

str~int on accelerations to produce a single constraint equation for a pinned 

joint as . _ 

( I-h/7 ·) ( .Pn.-~ ~72-j)~.t wm) T A.hh·t={Wn·hn w m hm).JJ;_1 w~ ®hn 

( 4. 16) 

where A. is an arbitrary scalar (A.to) 

We note that since · {I-/Jh) t=t ·the original system equations 

may be written as 
¢n. wn ~ .ll/I-h 17-} t,; u . (.. 2.n. 

¢m wm- j)m (Z-IJ IJ) t= l(z. 
m (4.17) 

This form has the advantage of making the system matrix 

symmetrical. 

4.3.4 Additional Constraint Relationships 

In addition to the joint constraints developed in Section 4.3.3, 

other relationships are derived in this section for two types of distance con­

straints, a rolling constraint and a sliding constraint. 

TYPE 1 

The zero distance constraint requires a point on a segment be 

the same as a point on another segment,· as indicated in Figure (4.4). In gen­

eral, consider two segments m and n such that r locates a point in segment m· 
m 

relative to its own e.g. and r locates a point in segment n relative to its own 
n 

e.g. The zero distance constraint equation then is written as: 
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Xm r .IJ.;;_1 
rm.=X n r-.lJn-Jr n- ( 4. 18) 

· Xm,Xn, locates the c. g of segments m and n w. r. tan inertial reference 

system. 

Twice differentiating this equation yields the constraint 

equation 

where 

•• •• -L • -f • 

Xm: Xn-lJm rm. c8' Wm r .l)n rn. ®~ = f;j 
n. 

~n=JJ~.t [wn ® (w n. ® rn.J] -1)~1 "[w~ (wm ® r~ 

TYPE II Fixed Distance Constraint 

( 4. 19) 

The fixed distance constraint allows a specified point on one 

segment to be a fixed (constant) distance from a specified point on another 

segment, as illustrated in Figure (4. 5). Consider two segments m and n 

such that Z"m locates a point in segment m and Z"n locates a point in segment 

tJ • Also define.}'. to be a fixed distance vector between these two points. 

The constraint equation is written simply as 

,JJ:fl= d. 2.= l,.c '~ 
(4. 2 0) 

where 

·v· 7'1-I X .J) -I ,/)=/1m r ..vm rm- n.- n. rn (4. 21) 

Twice differentiating eqn .(4. 20) yields. 

_;·:/) r l;,l.z=O 
where 
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SEGMENT n 

INERTIAL REF. 

Figure 4.4 ZERO DISTANCE CONSTRAINT 

SEGMENT n SEGMENT m 

INERTIAL REF. 

Figure 4.5 FIXED DISTANCE CONSTRAINT 
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,r: 

.~j = Xm -1-.LJ.;;/ [ ~ m ® rm + .wm@ (w m@ rm J] 
-x,-.lJn-.Z [ wn@ rn f- 00 n ® (.1)72 ~ rnJ] 

(4.22) 

rearranging . ·xm-Xn.~JJm.-l [~;on 18> raJ - ZJ;;,t [ ~n ® rn] 
. )/r_[);;t ["'n'"("'n'" rnl] -_[},;:_ [wm@(w,.,.orm] (4.23) 

For the distance constraint the constraint force q must be 

_/) • Define then a unit vector h in the direction of/ . 

~ -1 :J) -Z 
I; _fi = Xm f-..vm. r m.-Xn- n r 12 

j_;el jXm -r _l)n;.zrm-Xn-]):rn-j 

directed along 

(4. 24) 

Although only the magnitude of the constraint force q need 

be computed, for purposes of symmetry and computation logic the vector 

nature of the constraint equation is maintained. 

For this reason the constraint force is defined along h by 

);. tJ,. then maintained as a vector by h (l;.f/) . The same procedure is 

performed on the constraint relation yielding the following: 

![''"' :I[ J :1[ J 17z IJ. XmXn flJm- wm~ rm -.IJ;. wn ® rn 

+A.(I-hh·) CJ=h{ n{JJ;1 w n ®(wn®.rn)-]);;_Jwm ®(wm®rm) ]-~I J (4. 25) 

A. is an arbitrary scalar -:/. 0. 

TYPE ill & IV Rolling and Sliding Constraints 

These constraint~ provide the capability of modeling the 

motion of surfaces which are rolling or sliding over each other. A diagram 

of the geometrical configuration and appropriate variable definition is pre­

sented in Figure 4. 6. The relationship at the point of contact is 

' 77 
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A"m -r.zJ~:'( ~ r r~) = Xn r.LJ.;;_1 (-l,:rrn.) 
The time derivative of this expression is 

" -.:t / 1J ) 7'1-.1' I • 71 -1 / ~ ) -1 1 
Xm r.ZJm. W177 ®(-I'm :rrm r .Lfn rm. =X77 1-..vn wn. @ (...(n r rn. r -4 rn . 

The relative velocity of the surfaces at the point of contact is 

• -I I ) . -.z / tjEL =Xm f j)m w m ® (:Jm r rm. - Xn-.J)n- w n ~ r~ r rzz) 

,. 

(4. 26) 

(4. 27) 

(4. 28) 

The rolling constraint requires that the relative velocity be zero and the 

sliding constraint requires that the normal component of the relative 

velocity be zero. Thus 

VRf.t. 0 for z--oll 
t· t1.. = 0 · for slide 

IUL 

we· have from (4.27) and (4.28) 

V J)_ -.1 I -.! 1- r• - n· r· 1 
/?EL m m -~-n 

(4. 29) 

(4. 30) 

* 

Note that for the rolling constraint, Equation (4.30) requires 'that ·]},-1. r I=]) :1r ;. 
m m n. n-

* Note: The prime on r and r , indicates the time derivative of the respective m n. 
variables in its local reference system. 
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SEGMENT m 

SEGMENT n 

INERTIAL REF. 

XTTJ, Xn INERTIAL REF. POSITION OF e.g. FOR SEGMENTS m AND n • 

../m../n OFFSET OF SURFACE m AND n FROM e.g. 

r,.J), VECTOR TO POINT OF CONTACT EACH IN ITS OWN LOCAL REFERENCE FRAME. 

t NORMAL TO SURFACE AT POINT OF CONTACT. 

fJ CONSTRAINT FORCE 

Figure 4.6 GEOMETRY FOR GENERAL ROLLING CONSTRAINT 
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The distinction between rolling and sliding is made by com­

puting the force required to impose a rolling constraint. The magnitude of 

the tangential component of this force is compared to the magnitude of the 

normal component times a specified friction coefficient. 

Thus, f~t:f (tangential force) is compared to fi l9'nl 
where ft is the static friction coefficient and lf,.,l is the normal component 

of the constraint force. 

If Ill tl ~ A~~ n I then the surface characteristics will 

sustain a roll. If l<ttl >..fi ~~n 1 sliding will occur. 

When sliding occurs the direction of the constraint force is 

along the vector h where 

h=(t:,ol:,;; ~1 f_/)
2 

(4.31) 

where "tis the normal vector, .f is the coefficient of sliding friction and V 

is the tangential component of the relative velocity which will be equal to 

V_ for a true slide (since t. j/_ = 0 • ) 
llEL. I?EL 

The constraint equation. in acceleration form .are found by 

differentiating equation(4. 29). They are: 

for rolling; 

Xm- .])772-y../m t-r0 )® ~m-X~ r .1},-:I/IwrrJV)® ~77=.1J;1.(w77 ® ( w 77 ro(/n-r~) )-.lJ,;/wm® 
(wl7J~ (../717 rrm)1..1J,; -1w, ~ r~-~-1w »;® r~ · · 

and for sliding; (4.32) 

t.[xm-.D"'-1(-In,trm)®, wm -X,rJJ, ff-4~-r,)® w
77

J] =t· f!n-.t fwn. ®(w11®j4rr72 J) 
-1 /, I d )I ) -1 / -1 'J • (JJ. -.t. I Tl -.1 ') -]Jm wrn®rwJ?J~frn?-rrm ;r..lJn wn®.r'l-_1)~ whl®rJ?o? -t· 17 rn-.vm rm 

( 4. 33) 
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and ( .1-hh-} r = 0 , where t is the time derivative of t 

The two equations for. the sliding constraint may be combined 

into one·matrix equation as . 

ht{..fm-.Dm-.l (.-/n,f.rm)«J ~m- }(,r.fh-1 Urrn)~ dJ~ 1- /L {.l-1;1?3~. 

= IJf. [ ..D;/·w n®(wn®(..ln r-r,J) -.1J;;:,{wm ® (wm@ (-/n,rr~J)' 

n -:t I JJ. -.t 'J t. • f.J) -1 " ]). -1 1) -r~ 00n'®rn- m 00m®rm -,,t·l~ n rn- mrm (4.34) 

The right hand side of these constraint equations contains 
• I 

the unknowns t, rn and r,;, which depend on the kinematics and the geo-

metric properties of the surfaces. 

which yields 

The contact routines normally will compute the point of contact 

r , ·r and the vectors t and h. 
"' Tl . . 

In the program when a roll-slide constraint is specified, no force 

deflection characteristic is specified but the impulse option should be used to 

insure that the normal component of relative velocity is reduced to zero. That 

is one should specify the impulse option with a coefficient of restitution equal 

to zero. This will insure that t• VREL=O at the instant of first contact. 
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Calculation of r' r' i: in m' n' the Program 

The current version of the program considers ellipsoid­

plane (Subroutine PLELP) and ellipsoid-ellipsoid (Subroutine SEGSEG) 

contacts. Since the calculations of tJ r 1 and r' are similar the equations 
, m ~ 

will be derived together. 

The equation of the ellipsoids _are 

rm ·Am rrn -j· 
r .,LJ, r =1 n. n n. . 

and the equation of the plane is 

rn • tn'"'.Y 

where lim, lin are the ellipsoid matrices, constant in the .local coordinate 

systems and t is the normal to the plane, a constant in the local coordi­
n 

nate system. . .. 

For the ellipsoid plane contact we have (Figure 4. 7) 
, 11. r n -.1 m m _ lJ.. -1 

~. !Am rml -t"= - n In- (4.35) 

For the exterior ellipsoid-ellipsoid contact we have 

( Figure4. 8) J) -.i A'm r.m = - t' -=- - ..2?. -L ,.qn rn. . 

m lAm r.>nj · It I h':>t. r n.-\ 

For the interior ellipsoid-ellipsoid contact (the exterior 

of ellipsoid 11m contacts the interior of ellipsoid Aa )we have (not illustrated) 

JJ.. -1 llm rm = _ t =.lJ. -:t .lln rn. 
m /11m r1771 n /1'977 rn I 

For convenience we 

t:_ /1177 rln 

ilt = -jltm rml 

define (for ellipsoids) 

" t = -r )777 rn 
r; -~~ r?; I 

Note 
-.1 . 7'\ -1 

t=lJm tm=..vn tn 
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UNIT VECTOR NORMAL 
TO PLANE 

SEGMENT m 

Figure 4.7 

Figure 4.8 

SEGMENT n 

ELLIPSOID ROLLING (OR SLIDING) OVER A PLANE 

SEGMENT n 

ELLIPSOID ROLLING (OR SLIDING) OVER AN ELLIPSOID 
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.'\ 

yields 

Differentiating the equations of the ellipsoids and planes 

rdz.tm=O 

rnl· tn =0 also ~. t = 0 

Differentiating the ellipsoid plane normal equation 

.v.. w ® .;..v.. --- r =- = -...v. w ~ 
n-.1 Amrm 71-.zullmr;_, A Amrm. llmr:n] t.. n-j t 
m m ll9mrml m 119~ rml m m lllm ·rml' . n n TJ 

which may be written as ·. 

A 
I . 

.1) -.1 t _, [1 J m rm . n 
- m w m ® m f 1k - t m tm J lAm rm\ = - t = -.vn w., ci' tn 

Differentiating the exterior ellipsoid-ellipsC?id equation 

-.1 -.z t J An r,; · n-j . t · :ZJ.-.1 /r t. t } A'n rn 
-j}m wm® tmr-JJ"? I-tmtm· lA -t=-...vn wn~ n- n (L- 77 n" ~~~ 

lTJr771 j , . r·n n 

Differentiating the interior ellipsoid-ellipsoid equations 

yield~ .. 

_n -..r. n -.t lz.. ~ Am r~ t" . n -.z -1(.!- t t ) h'nrn, 
-:vm wm®4t----m [-tmtmj lt?mrm(- =-~ wn®tn.;-])77 -77 n· j~rnl 

If we_ add the relation 
· JJ.-:J I lJ. -1 1 flrEt. r m rm= n r77 

to the above equation we have a sufficient number of equations to solve 
• I . 

for t, rm, r; • These may be summarized as follows: 

4 
I 

wm® tm f 0 rm 

0 ;= -.l), r I -w ® t n. 72 i? n 

.D. -.t -:l)_ -.t . 
- Vn-ct. 0 t I (4.36) m n ' 
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,, 

. f J 11m • -- +;>..tt. where f= Z- tm tm IAmYml m m 

and 

r=O 
. An. 

F =- :t ll- t l'l tn· )~.., r"' I 

for plane 

for ellipsoid n, + external contact 

internal contact 

. ;>.. is an arbitrary constant chosen such that the matrix is nonsingular 
(in practice /l .... ..L ) · 

jrm.l 

The solution may be written in the form 

where 

-I -1 I -1 
Dh r 11 = C. W - c -t ~. c-'"'-' 

-c. c-1 -to 

D
-1 I -1 1 

'J77 r117 -= .0.., r_., VREt 

· t • t{' { w.,® tn + F r,/] 

W -:: 0::: W,.. c» tn, - D;' W 11 ® tn + D;;.; A,., D nt VRt::L;, A""' r...,l) 

for the ellipsoid-ellipsoid contact 

(4 .37) 

C= D~A~D,.,~~AmrMI +tf,'A,Dn/c±/Ahr
11
l) (4.38) 

and for the ellipsoid.- plane contact 

-I D .. I 
(! -:: Dn, Alrl_ j J Atotr""' I (4.39) 
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4.4 TENSION ELE:MENT 

4.4.1 Specifications 

The primary purpose of the tension element (TE) is the simu­

lation of the longitudinal muscles of the human body. It behaves statically in 

a manner simular to a linear spring in thatwhenit is subjected to a tension 

force F, it increases in lerigth by an amount propo~tional to F. However, 

in contrast to a spring, the TE displays no stiffness when subjected to a 

compression force. In this respect it is similar to a longitudinal body muscle. 

The TE has been designed so that, under the action of rapidly 

varying tension forces, the distribution of strains within the element is 

uniquely defined by the strains at the two ends of the element. As a conse­

quence, the equations of motion of the element are simplified: they depend 

only on the positions, velocities,· and accelerations of the two ends of the 

element. 

The computer program inputs required for complete specifi­

cation of the TE are denoted by L
0

, MA, MB, MAB, k, d . These quantities 

are defined in the following discussion. 

Figure 4.9 depicts the geometry of the TE when subjected to 

a static tens_ion F 

~--r -. l.c- I 

-"F F" 

A L~----------------------~ 
B 

Figure 4.9 TENSION ELEMENT GEOMETRY 
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'''\ The two ends of the element are denoted by A and B. In connection with 

Figure 4.9 quantities are defined as follows: 

L = length of TE when 'subjected to a tension force 

.Jc = distance from the end A to the center of mass of the TE 
_,. 

L ::. length of TE when the tens ion force F is infinitesimal. 
0 

j = the val~e of}c when the tension force F is infinitesimal. 

The cross section of the TE is treated as negligible. Thus, 

the moment _of inertia about its long axis is negligible. · The inertial prop­

erties of the element are completely determined by the quantities L and .J 
defined above, and the quantities MT and ¢ A defined as follows: 

MT=total mass of TE 

¢ , ¢
8

=moment of inertia of TE about the point A, B and about an A . 
. axis perpendicular to the long axis of the element when __,. 
· the tension force F is negligible. 

In terms of the quantities L, L
0

, MT and r} A, the quantiti~s 
MA and ~ and MAB. are given by 

by 

" 
AlB =?A !t_

0
z (4.40) 

'• 

~:: fLJ!L z_ 
0. (4.41) 

MAa= :_ ( Mr-MA-A1a) 
(4.42) 

The computer program input, k, is a force constant given 

;· ., 

I 71 
K=(L-L

0
) 
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·' 

Where F denotes the magnitude of the static tension force F . The quantities 
__,., 
F, L and L

0 
are defined above. 

To define the program input, d, it is noted that when the 
_, 

TE is not in static equilibrium, the tension force, F, can be expressed as 

the sum of the force of inertia, the force of stiffness, and the force of 

vis~osity (or dissipation.) The parameter d is a constant of dissipation 

defined by the relation 

~ . 
Fd. . t' = dL . . .. tsstpa ton 

~ , . 

Where · Fd. . t·· denotes the force of dissipation and L denotes the time _tsstpa ton 
rate of change of the length, L, of the TE. 

:4.4. 2 Derivation 

Represent the TE by the discrete system depicted in Figure 4.10 

Figure 4.10 TENSION ELEMENT MODEL 
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As shown, the discrete system is composed of N particles connected by 

N-1 springs. The mass of theNth particle is denoted by m • The position 
n 

vector of theNth particle relative to the inertial . coordinate system is 

denoted by ;n 1 Jf and ~ denote external forces ~pplied to the first and 

Nth particles respectively.· Since the element cannot support externally 

. applied torques, it·. must be coupled to other elements in such a way that it 

will not be subjected to external torques (or force couples.) 

The springs can exert forces of tension when stretched but 

they cannot exert forces of compression. Each spring has viscous damping. 

The TE is subject to constraints (not shown in Figure 4.10) 

which insures that all of the particles lie on a straight line (regardless of 

the directions of the applied forces 1;, and .F,; ) and that the strains and 

relative motions within the element are uniquely determined by the positions 

and motions of the two ends of the element. The constraint relations are: 

(~-~ )=~n (t- ~ J (4.44) 

Where the ~?Z. are constants which satisfy 

0=/;z. < l;n< ~n,..:r''f::.l!,11=1 (4.45) 

Putting 
__,. _,., 72=2 7 N -1 
r.t = rA 

__,. ....::.. 

r"'"' r.L:I 

Equation 4.44 may be re-expressed 

rn=(l-~n} ~ -~-~7/ra (4.46) 
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The equation of motion 'of the TE will be obtained by the 

D'Alembert method. That is, the equations will be expressed first for 

motion in the absence of the constraints, then the modified equations, which 

take account of the constraints, can be inferred. 

The equations of motion in the absence of the constraints in 

(4.46) are 

* 
!£ (c7~)- r)T f ff t oD = __. , -.\ 
dt a rn a~ a.~ a~ lA dn./-~ ~~i. 

(4.47) 

Where T, V, D denote, respectively, the total kinetic energy, total poten­

tial energy, and Rayleigh Dissipation Function for the system depicted in 

Figure 4. 16. T, V, and D are expressed as functions of the coordinates 

r'"'n and velocities -i:"n of the particles. In (4.47) af8rn denotes the gradient 
....::... 

with respect to the components of rn . 

To obtain the equations of motion which include the constraints, 
~~-...:.....:...:. 

T, V, and Dare re-expressed as functions of .;,;,z;,.,r8 r_, by direct' 

substitution, employing the constraint relations in (4.46~ The equations of 

motion can then be expressing 

where 

!!:_ (aT )-aT+ av 1 ~ _ ~ 
d :l~ ..:J- ;:)- ~""" - 'G/1 t ".rA v.~ v .r/1 o r/1 

d (iJT) o T 
dt r)~ - Q~ 

t?V 
f d~ 

c7D ____, 
f :::>...,. =- Z'8 

vr8 

- " o/A=L 
7Z=1 

a~ c- ...3. O;; ' fA dn:t. f Fa 071N ) 

(4.48) 

*Since we are working in 3 space it seems simpler to write equations (4.47), 
(4.48) and (4.49) in a vector form where each equation represents 3 equations 
in the more conventjlonal notation where ~ would have 3 generalized coordinates 
~·,, y,. , f~r~ and r., the coordinates jr.,, t"z , g.. . In this scheme (4.47) would 

be written as 3 

st(;)T ) - ~. r .)V + dJ> -= ~1. + F84 
d-t d ~~, d aw, ~ 8,, d g~, 

'= 1,3 
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N ar- (...... __, ) 
~8 = L. ;)~. ~ dnt f rea;,"' 

7J = t. "rll 
_(4.49)' 

From Figure 4.1(~ the total kinetic energy of the system is 

given by 
t N ,~, 2, T=- L m rn 
2.. n.. =1 7Z. 

Substit~ting from (4.46) and rearranging leads to 

t ,....:....,:z.. . .:t. l..:...l:z.. (~..:.,) T= 2: MA rll f ~ MB rB f MAe rA ·rl! 

. (4.50) 

where 

M11 = t. mn.(l-~nJz 
N :l-

A113 = ?.-, mn C: n 

~a =f. mn. e,n (1-!;n) 
. ,., 

·(4.51) 

The potential energy, V, contributed by the stiffness of the 

springs may be expressed 

· V"' J; 2 kn {L111/
2
' IJJn> 0 

= o L1 .,{71 < 0 
(4.52) 

Where A 1~~, denotes the relative elongation of the spring connecting the nth and 

(n+l)th particles, and Kn denotes the corresponding force constant. The 

second of the relations. (4.52)' expresses the condition that the springs 

exert no forces of compression. Evidently, 

LLfn. = lrnu-~1-/rJz,..r-~t (4.53) 

Where !:t:;r.z -t;lo denotes the length of the spring connecting the particles 

nand n+l when this spring is subjected only to a negligible tension. From 
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''" (4.46) 

( ~f[r~J = {l:nfY!;J]) (ra-r:4 J 

(4.54) 

and so 

!1)n= (en;t -~17) [I rll- ~ 1-Lo J 
(4.55) 

Where L denotes the overall length of the TE when it is subjected to a 
0 

negligible static tens ion. 

Substitution of (4.55) into (4.52} leads to 

• 
V= ~ kUr;~r;j~io] 2. · tf /r8 -r/ll>L

0 

V=o (4. 56) 
otherwise 

Where 
I'l-L . 2. 

k= L K17 (~nri"tn} '77::: :t (4.57) 

The Rayleigh Dissipation Function~ D, is equal to half the 

rate of dissipation of energy resulting from the viscous forces. It is 

assumed that a dissipation element is connected between each pair of 

particles. 

Thus, 

IV-:t • 

-D=ff_L_ri (LJ./. ;~ 
n:J. J') n ( 4. 58) 

' 

Where d n denotes the dissipation coefficient for ~he dissipative element 

between the nth and (n+l) the particles and .11 n is defined in (4.55) .· 

Substituting (4.55) into (4.58~ one obtains 

ci ,~ _;.12. 
0=2. r8-rA 

(4.59) 
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where 

,Y-.l 

d =j;.z d77 (?77,.7tf7)2.- (4.60) 

Substitution of the relations (4. sc», (4. 521 {4. 59) and (4. 46)into 

(4.48)and(4.49)yields the eq~tions of motion for the TE:. 

~ t"~a ·t-ctrt-t)-Ts-~ 
. •• •• • ~ .-:a. --.::.... 

· · M.tJ ~ f ~e r; f d. ( TB- r A} f t; r f"a 
( 4. 61) 

" where 

t;= K (r;- rA) [_1- Lo/ ~~- r,J] If jr8 - r,_ \ '> L0 

i!=o s 
otherwise (4.62) 

The definitions of the parameters MA, ~· MAB' K, d 

given in the first subsection follows from the equations of motion in (4.61) 

and the relations in (4.Sl) and (4.46). 

For purposes of implementing the tension element in the 

framework of the program, let the point rA be fixed. in one rigid segment 

and let the point r 6 be fixed in another rigid segment. Then the following 

relationships may be written. 

where 

~ ...... 

]) 
-.1 

rA -==Xm -f m rm · 
. .J)-1 

r .8 = Xn r n rn.. 

xm,><'l"l -location of the c. g. of segments"' and}( respectively in 

inertial reference. 

rh\ .... location of point rA with respect to the c. g. of segment m 
this is a constant in m's local reference. 

I· 
I. 
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rn location of point r 6 with respect to the c. g. of segment 

this is a constant in 17~ local reference 

:0,.,,~ are the direction cosine matrices of segment m and seg­

mentTl 

The inputs required for each tension element_ are 

. rm-'m,rn;!Z and the values of the scalars MA, MIJ,MillJ,k;d..a.n.dL0 

With each tension element are associated the two constraint 

forces FA and F B. Equations 4. 61 are the constraint equations. The 

force(- FA)and the torquetrm@.l)n.?~re applied to segmentm and the force 

(F B) and the torque(r,p .On FIJ)are applied to segment h (This i~ ~on.7 ~Y use 

of the system matrices A 13 and A 23). The expressions for ~J~,T;,re 

are given: 

-.1 
rA= Xmr- .z>m rm 
. • .t 
r,q=Xmt ])~. w 717 ® r,n 
rA= Xm t .ZJ;/ w m~ rm r1J~ w m@ (w 7?') ® rm) 

.. rB= Jn f-4-~rn 
. • • -..t 
~= Xi?r..On w, ® rn 

r~= Xnf .vn-z ~ 7J(!J,Tnf.JJ.,;
1

w7?@(wJ7 ®T77) 

where w-7?'7 and W?? are the angular velocities of the respective segments. 

Substitution of these terms into the constraint equation 4.61 results in the 

form needed by the program. The simularity of this constraint to the other 

types of constraints (fixed point, etc.) should be noted~ The tens ion element 

is another example of a case where the system equations are non- symmetrical 

as was true for the sliding constraint. 
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4.5 FLEXIBLE ELEMENT PARAMETERS 

The flexible element is intended for representations of complex, 

flexible portions of the human body, including, in particular, the neck, torso, 

and trunk. It is composed of a chain of N joined rigid segments. Each joint 

has three degrees of freedom with three corresponding stiffness constants. In 

addition, each of the N-2 interior segments of the flexible element is con­

strained so that its orientation is uniquely determined by the orientations of 

the end (or .outer) segments of the element. These constraints have been intro-

·duced to approximate the effects of body muscles which are so connected that, 

rather than acting on individual joints, ·they determine the overall flexural 

characteristics of the represented body member. Fidelity of representation can 

be insured by determination of flexible element parameters from measurements. 

Table 4.1 is a summary list of proposed computer program inputs for 

the flexible elements. The last column of the table indicates where the defi­

nition of each input is given. 

The orientation of segment n relative to segment 1 is designated by 

the three angles 0 , B , e... (see the discussion in the context of Figure 
Jn zn .. n 

·4.12). In order to avoid singularities in certain. transform matrices employed 

in the calculations (see equation (4.10)) it is necessary to restrict Bn to 

the domain 
-% <e.,,<% 

Since there are no restrictions on the ranges of variations of 81 and tJ3 , . · ·n n 
should be chosen for the angle of bend maximum range of variation. F~; .. -

e, 
n 

example, in the representation of the human torso, forward bending should corres-

pond to the angles 81 and not to t?z • ~ would. correspond· to sidewise bending n n n 
of the torso. It should then be possible to satisfy the above bounds on B;n 

since few people (if any) can bend their torsos sidewise through 90°. 
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SYMBOL 

e.J-
t.'n 

N 

lt'j (.,) 

ft'/(n} 

'h-e.·f {n) 

I(' 

M-n 

~If t ez, I tJ_,,., 

i = .,, 3 
77 = 1, N-1 

t.',j. = t,3 
?7 =1,/V 

t.i =1,3 
"71 = 1,N 

~.;.;: :: 1,3 
"71 = 1,N 

" :. 1. 3 
?? = 1, N 

-n=-t,N 

11 • I, 1'1 

Table 4.1 

COMPUTER PROGRAM INPUTS 

FOR FLEXIBLE ELEMENT 

BRIEF DESCRIPTION 

set of bias angles 

number of segments in 
element 

first-order taper function 
in constraint relation 

second-order, interaction 
taper function in con­
straint relation 

second-order, quadratic­
form taper function in 
constraint relation 

moments of inertia elements 
of nth segment 

mass of nth segment 

yaw, pitch and roll 
angles 
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WHERE DEFINED 

Equation ( 4. 64) 

First paragraph 

Equation(4. 64) 

Equation (4.64) 

Equation (4.64) 

Context of Equation .. 
(4'.69) . 

Context of Equation 
( 4.69) 

Context of Equation 
(4.63) 

! 



EXTERNAL 
SEGMENT . ~JOINTS 

~ . 1'1 ;r, 2 

R.N 

. . 
.FIGURE 4.11 MODEL OF FLEXIBLE SEGMENT 
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In the rest of this subsection, all of the basic geometry of the 

flexible element, except details on the joints, is presented. The latter are 

discussed in the third subsection. Development of the equations of motion is 

undertaken in the second subsection. 

As noted above, the flexible element is composed of N joined seg-

ments which are labelled 1 toN. In each segment there is a rigid local coordi-
. h h 1 . t A "It 1\}f A >7 A d . d . F. nate system w1t ort ogona un1t vee ors e1 , eL , e 5 • s ep1cte 1n 1gure 

4.12, the unit vectors ~f are aligned with the principal inertia axes. Zn 

is the position vector of the e.g. of segment n. 

The orientation of the ~; vector of the nth segment relative to 

segment 1 is shown in Figure 4.12 and are in agreement with yaw, pitch and roll 

angles described in Figure 2.7 .. 

"'' e, 

.1\ I 
e3 

I s,~, 
I 

I 

I ~ 
I - -'1 8z, 

I -- IIJ 
I -- ez. --

lin e, 

Figure 4.12 COORDINATES FOR FLEXIBLE SEGMENT 
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/\1 

The first rotation is through an angle 8 1 about e 3 , the second 
" 1 n . 

rotation is through an angle +82 about the n 
new e 2.. : the final rotation is 

. through an angle ~11 about e; (which is the new 
/\'7) 1\"Y) A-n A1 1\J A1 

between e
1 

, e2.., e-3 and e 1 , e 2 , e.3 is 

" 1 
e1 .) The relation 

An 
- st.'-n s .... \ ( CtJs ~~~ st"n~, o \ 1 e~ e1 1 a· 0 eo::. e,., 0 

An 

eos "'• OJ e - = 0 cos .e,.JJ st.'n b"+ 0 1 
0 ) \-sin "'• ~ 

1\n 

<:!.3 0 - st'ns,"' eos ~ .. + 5t'n 8-R., 0 CtJS 6.-, 1J t7 1 

( 4. 63) 

In accord with a suggestion of Dr. Ovenshire, {}
1 1 

a, 
1 

0,'1 will be 
,., !7 

represented by the second degree polynomials in the relations 

&.:;';n = ~:n + .f!~.l (n) (}I.N +- ft·2. (n) B2.N + .p t.'3 (n) (}3N 

+ ?~·, (-n} ~N ~N + }l-7. ("7?) &3N ~1N + i ,.3(7?) 1)1N B2N . 

~ J :r. 
7- '7l,e.1 (n} (}1N +- A-t:z(n) ()2N 

~ 

+- -A..-t-.3("71) e3N 

where 

·~ 

ee'n = a bias function with 

f.' .. {N) = t.;- t,i ' 

e~ = o 
(.?'/ 

j-t:.'/(N) :()' 

"n= 2.,N 
t.' = . 1, a 

/or n=N 

~,/-·(N) •() 

(4.64) 

(4.65) 

The bias functions &t~ and the taper functions lei (-n), l''i {n), -bt:.i (n) 
all program inputs. 
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The joints are located in the standard manner: 

R,n = 2 n +- r n n (4.66) 

where ~ is the location of the nth joint, also 

-;e =Z +.,. 
n n + 1 ·Jt+.t, h -n=t,N-1 (4.67) 

where ~~~· are defined in Figure 4.11. 

The connection constraints (that is, the condition that the joints 

connecting segments do not pull apart) are contained in the relations. (4.66) 

and (4.67). · 

The introduction of the bias functions, e fn also allows the latitude 

of choosing the principal axes for the nth segment to coincide with the unit 
A?? 

vectors ec.· Thus, the Moment of Inertia Tensor for the nth segment is given 

by 
.3 

fn = L 
t.'s1 

~" J\")"] 1\"7/ r,. e,; e'-. 

(4.68) 
The inertia elements ?7,~ are program inputs, as are the masses M" of the 

segments. 

The Equations of Motion 

The translation equation of motion of the nth segment of the flexible 

element may be expressed 

M'h -rn 
__,. -c 

= Ft Sn1 ~ F., 

100 

+ ~ 8n + :rc. ..,. 
(4.69) 
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where M
11

, and r17 are as previously defined, and 

..... 
Ft 

FN 

F_e 
7? 

...... (! 

f., 

where 

w" 

-Nt 

N"' 

-, 
't'c 

= 

= 

= 

= 

an external applied force at the point with position vector eo 
(see Figure 4.11) 

an external applied force at the point with position vector 

(~) 

an external force applied to a point of the contact surface 

which is rigidly connected to the segment n 

the summation of all constraint forces.acting on segment n as 

a result of the configuration constraints on the flexible element 

The rotational equation of motion of the nth segment may be expressed 

,I ["' . -] - -"" -n -""C -joi-nt:s -c 
tit- 'l'.,.wn = N1 8nT + NN o'17N +- rc.. 6PF., +- N.,., +n., 

( 4. 70) 
-""c . (J, and F, are as previously defined and 

= 

= 

= 

= 

total angular velocity of nth segment 

an external torque (that is, force moment and/or force couple) 

applied to segment 1 through application at the point with 

position.vector ~1 • 

same as N1 except applied to segment N through application at 

the point with position vector ( RN + /'.. e N). n 1 

position vector of point of application of the force Fnc relative 

to the ·c.m.·of segment n. This vector depends on many things 

including the dimensions of the contact surface. 
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-:TD/tJTS 

Nl1 = 

~e 

h = 
" 

net torque applied to segment n as a result of stiffness of the 

joints which connect this segment to the adjacent segments n-1 

and n+l. 

the summation of all constraint torques acting on segment n as 

a result of the configuration constraints on the flexible element. 

In the successive sections, the necessary expressions for forces, 

torques and constraint relations are derived. 

Expressions For Torques Due To Stiffness Of Joints 

~· 

Let N 1 denote the torque exerted n, n+ on segment n due to the stiffness 
~ 

of the joint between segment n and segment n+l. 

~OINT~ result in the following equations: 

The definitions of N 1 and n, n+ 

r:fiOINTS __.. 
n=l,N -N -N · (4.71) n - n,n+l n-l,n 

where 
~ ~ 

N..,,.v+l = N =0 0,1 (4.72) 

~ . . 
The N 1 are computed using the same coordinate designation as de-n,n+ 

scribed in Section 6.0 and indicated in Figure 4.13. 

i\ 

'fa 
"" a, 

.. e, 

" .. G",. 

.... 
ez. 

Figure 4.13 JOINT COORDINATE SYSTEM 
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The program provides several methods of determining the torques be­

tween the segments defining the flexible element as indicated below . 

...... 
N n,n+l 

-N n,n+l 

..... 
N n,n+l 

N n,n+l 

torque equations developed in Section 6.1 (4.75) 

torque equations developed in Section 6.1 

using globolgraphic representation of joint 

stops (Section 6.2) (4.76) 

torque equations developed in Section 6.3 

(Euler Joint) (4.77) 

torque equations developed in Section 6.3 

using the Globalgrpahic~epresentation of the 

joint stop torque • 

. 103 
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The Force-Type Constraint Relations 

From Figure 4.17 and the discussion in the context of (4.66) and 

(4.67) ·the connection constraint for the joint between segment n and segment 

n+l is 

z. .,.-;. 
?7 n,n = Z +.r 

n.;-1 n, n -rt .. 
(4.79) 

These relations do not include the connection constraints between 

the Flexible Element and other segments it is connected to. Differentiating 

(4.79) twice yields 
_.. _:... 

2 +- ~ 
?? n 

Let 

Then 

~ ~ ~ ~ (_.. ..... - (t- ~ ) 
fl) r -2 -u.J ~ r = - cu ® w ® r · UJ ~· W ® r 

njn n-tt nt-1 n,n+1· 77 n n~n)+ 71+1 n-rt n,n+t 

! (4.80) 

~ 

fn = constraint force exerted on segment n due to connection 

constraint between segment n and segment n+l. 

~c ~ ~ 

~n .:: f'., - f?7-1 n= 1,N 

; (4. 81) 

_,.c ~ 
~ - ...... . _,. t:c .,.'J~e 

11?7 = r 0 f - 1'n-t,n ® -f!n-1 + n 
n,n n ?] 

(4.82) 
~a ~c 

where 1., andn" are the total constraint forces and torques on segment n 

(previously defined)and 

...a 

-1 
0 

·, 

_.. 

I' = () 
N 
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Forces and torques resulting from connecting the Flexible Element 
..a - ~ _.. to.,.,_ue 

to external segments are represented separately by F, , FN , N, and NN • nn 
denotes the net constraint torque.acting on segment n as the result of torque­

type constraints. 

The Torque-Type Constraint Relations 

This subsection covers the formulation of the torque-type constraint 

relations. The corresponding compatibility relations are considered in the next 

subsection. 

The relations in (4.64) can be expressed more generally 

8t·n = G,.n [ 81n , 82.n ' ean] (. = 1,3 

">7 = ZJN 

I (4. 84) 

The functions ~n can be evaluated in a separate subroutine. This procedure will 

allow more latitude for generalizations in the functional form. 

From (4.84) .3 

~-77 = ft
1 

6nt.j [em, 61.2.n, 03n] BiN 
(4. 85) 

where 

6/?&i = 
o6,·n 
aaiN 

fl = Z,N 

(4. 86) 

Now, the Bin are nonorthogonal components of the relative angular 
_.:a. ....- --·--. I . • 

velocity tt) -w . From (4.65) and Figure 4.12 
?7 I 

' _..1 • A?? 

~ -w, = e1n e.!J + ~n e1 
• [ Af A1 J + & - e SG·n & r e c..os () 

277 1 . 177 .z. tn 

(4-•. 87) 
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·, 

~n .-. t 
Put a. = e 

1 ~ 

~" ~1 • ~1 a.. z. = - e1 sc.:n &,., r e.z cos e1?7 

~77 = en· 
!I 1 

Then, (4.87) may be reexpressed 

3 
~ 

u.~,., - t../1'. 
" • .....;n = 6 e. a. 

t'•1 (.?7 G 

_.., 
Introduce reciprocal unitary vectors ~£-. such that 

~ '77 

-?(.· • 

From (4.85), (4.89) and (4.90) 

~n 

a... 
1-

:1 • -"'77 
I;&. a.... 
i:t t 7? (. 

= 8(.i-

3 3 

= E E a.~ G .. &. 
t'= 1 j-":::1 G m 1- j-N 

(4. 88) 

(4.89) 

(4. 90) 

[;

3 3 . J r .3 J ...:. ~N '\'. -"N. ' 

=.?:~a..; 6 nii-l--i • L a..K f)KN 
(. = 1 ; = 1 ,. tr I<= 1 

or, employing (4.89) 

___.. -- + [....... ~ J wn- cJt = G, . tUN -t.Jt 

T 
where G denotes the tensor 

:n 

3 3 
-t <:)" ~ ~n 

G = L., w a.. 
7} t'=t j=1 (, 

Rearranging (4.91) , one obtains* 

Gnt';' 
-"N 

1-· 
I 

un + (G;-I) _.. + -" · w - G · w =O 
1 7'J N 

n=:z.,N-1 

(4.91} 

(4. 92) 

( 4. 93) 

'I" 

*Note that G
111 

:I (where I denotes the identity tensor.) So (4.93) 

vanishes identically when n = N. 
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~ . 

Differentiating (4.93): 
.!... 

[ ~ ] ~ T 
..;,..,. 

((./ + G -I ·w -G ·wN n :h 1 71 

·-r ~ ·~ ~ 

= -G ·w +G ·UI 
71 1 N N 

In employing ·(4.94) , it is to be observed that 

.:....:. 
u.Jn 

3 
\'. • <: = L.., c.u . n 

C.-=1 

.... ,., 
e. 

G 

(4. 94) 

7? = t,N 

(4.95) 

+ 
GN 

A logical base system in which to express the elements of the tensor 
A 1 

is the e. system. In this system 
t. 

To evaluate 
A f 

vectors e~.· 

G tn -n 
. t:'f. ' a.i 

From Figure 4.12 

G+ 
71 

3 3 

= 2: [, 
t.'=1 j=1 

1n "1 "1 
G .. e. e. 

{.1 " J-

. (4.96) 
~{I/ 

~d -t-1 can be expressed in terms of the unit 

/\71 1\1 .,.1 • -..1 . 
e 1 = e 1 C~Js e.z.:n cas e177 +- e" eo5 ez:n so1 e,n - e3 st- 71 6!z.-n 

Substituting ( 4. 97) into (4.88) yields 
3 

..... n '5"" 
a. . = L., 

. t: ;': 1 

7? e .. 
~;t 
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where 

( c~.) = 

tJ 0 

- st:n &
171 t- CaS 611?? 

Co.5 ~n~~?f CdSB 5t.71& 
.:l-"77 17f 

.3 
->:n \' ....--.__.. 
~G. = ~ (c. "?1T?. 

i=:1 't-
.... 1 e. 
1 

' 
tJ 

-St."->7&_ zn ( 4. 99) 

(4.100) 

where ( ~- 7 denotes the transpose inverse of c '7? , given by 

CtJS 9 177 e sG·,., e~:n . B 
- COS 171 - 5G 71 771 

eos &2..71 Cos &.zn 

(c. .,.,)-1 _ \ st·ne7 :n st.·n~;n st.:n&177 
- - t-CtJS e17J 

C-oS B.z:n Cas 61-z 71 

I tJ 0 , 

(4.101) 

The singular points of the matrix in (4.101) can be avoided by limiting the 

range of variation of e , as discussed in the first subsection. 

. . 

G 
T - 0CV 'r' " 1 '\' <\' ........,77 N -1 ..< 1 

Substitution of·;4.;8) and[(~.l~O) into (4.92) ~ds}to 

-~~e. ~LC. G C e. 
'77 t.'= 1 j.=t L K=1 J,t t.K. »K.£ ( J.Li / 

Comparing this relation with (4.96)•, it is.concluded that 

3 3 ...._., 
tn \' '\' C 71 G 

G . . = ~ L- (J<. n K. .t 
C.f 1(: 1 .l~ 1 

~-1 
( c 71) ..ti 

(4.101) 

r 
The next step is to differentiate G 

n 

From (4.96) 
~ 3 

A1 A1 . ..,. 
;;) a G + - e:,+ Gt ;;; -~-I L: r/~ G77 = e. e. 

1 n n 1 iz1 jrr• '1 " r 
-n=:Z,N-1 (4.103) 
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From (4.102) 

Now 

or 

where 

Also 

where 

Further, 

or 

where 

. ........._, 
en 

i.K: 

~ 

en 
t-'K. 

3 3 
• 171 

= L L ~ GnK..t 
~ 
( C N),l • Gt.j.' K. .. 1 .l":t t.K. t. 
_...:.._.,; 

-1 

= 

3 3 

-~- x L: z.., 
k.: 1 ..t. :.1 t.' I( 

'3' 3 

+L [ ~ 
Ji:cl J•l t.'K. 

~ d c.,.K. 

d 8177 

Btn +-

G 
??t<..l. ( c_NJ.tf 

G 
17K..L 

~-1 
(cN).Lj 

;-o.J 

(J (!,'-~ 
ezn 

(f e:zn 

= ~K e.77'J +-

............... on 
2. t.' K. ezn 

?? 

o.it: K. 

~-1 

(c'")-'j = 

7') 

= 

.............. 

7? 
(1 G(.; K.. 

J B1-?'J 

EN 
-'i 1 6in 

"N 
+- E_t. :l 

t 

-1 

f) 
271 

EL/"TT) -· 
() ( c If ).tt. 

'\ 7?? = 7, 2. 

d B7n n 

.3 

G, K._g = L 
.., = .., 

3 

G7? IG.L = L 
m= 1 

G71 ~<:. ..R __, ::. 

(} G-nK.L e-m -n 

G n K:. .L 7'J'1 & .,., -n 

oG-nK.L 

;r e???,., 

(4.104) 

(4.105) 

(4.106) 

(4.107) 

(4.108) 

(4.109) 

(4.110) 

GnK.~?n can be evaluated in the subroutine which evaluates 6
71

k..l and G,.n 
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•fl1 -
In summary,~j can be evaluated piecewise. First, the quantities~"' 

are integrated to obtain (;)"' and ~ ·• Then Bm can be determined 
I . 

and t? 
from the inverse of (4.89): 

. ......" 
&m = ~· • { ;;;N - (d, ) 

(4.111) 

The quantities ~·N, ,·"' 1, ... , .3 can be evaluated either by integrating ~·N or 

by employing the direction cosines of segments 1 and N, which are obtained by 

integration. The quantities &,·n and B"·n ( t' = 1, 3 ; n= Z , N-t) can then 

be obtained from the relations· (4.84) and (4.85). This procedure insures the 

satisfaction of the configuration c~straints. G
11

KL?71 and G 
71 

K...l can be eval­

uated f~om(4.109) and (4.110) nd o:. can be evaluated from (4.107)and 
........_.... ,-<.J ..-.....__, A:-1 ., .,-.:_, . 

(4.108). Then c,-: , Ce.~,(c;.r 1 and (c"'}~ 1 . ·can be evaluated from (4.99); 
. . . I , ~ . 
(4.105), (4.101) and (4.107). Finally, G~"T? can be computed from ,(~.105.). 

. ' ... . 'f 

The discussion of the quantities which appear in the torque-type con­

straint relations is complete. In the last subsection, the representation of the 

constraint torques is considered. 

The Constraint Torques 

expressed 

where 

- --, 
From (4.70) and (4.82), the rotational equations of motion may·be 

_::. ~force -tor1-ue N J 
H -71 - ·71 = a.D'f/ie 71 n 71 ?7 ·r. 

_. 
H ::. 

71 

d 
dt 

-n:-t,N 

[ ,n . t;jh ] 

'(4.112) ' 

Nn app&:ed ·= N 6 + N ...... ~ . ......., c ........ t (4.113) 
7 711 N onN + rc ® F + N ~o,.., 5 

71 71 

. (4.114) 
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_, Ioree -
7771 -= 'f'>?l7 ~ fn - r fil f 

71-1, ?1 '17-7 (4.115) 

_.. t:or1ve- d h · 1 · f h · and 7771 enotes t e constra1nt torques resu t1ng rom t e constra1nt 

relations . 

W 71 ,.. [ e; - I ] · 
+ w, - G71 • UJN = 0 

'17 = ·Z, N-1 
(4.116) 

The easiest way to infer the compatibility relations among the.con­

straint torques is by the Lagrange-multiplier method. If the constraint re­

lations in (4.116) are represented in the form 

N 

I: A,., • W 
77 ., 

"17: f 

....:.. t'o.,.,_u~ 
'77'17 

N-1 

=[ 
m=:Z. 

= 0 

A . A?rl 
m n 

where the 11
711 

are vector Lagrange multipliers. 

?ns.:Z., N-1 
(4.117) 

(4.118) 

Comparing (4.117) with (4.116) it is readily concluded that 

-"'-t:or'v~ 
- ..1 7J=.2..,N-T 

(4.119) -n71 - 7? 

N·1 

[ G; -·I] -;zLor~u~ = [ ...... 

' (_4 .120) 
:A • .,., 

.,., .. .z. 
N-1 

'+ 
(~.121) 

~-co.,.!v~ E ...... 
J., ·G ?7 .,-

'm N 

7n:: 2. 

Elimination of A~ from the relations (4.119)-(4.121) is immediate, and 

leads to the compatibility relations among the torques. 
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It is apparent that the equations of motion in (4.112) in conjunction 
~ 

with the ~nstraint relations in (4.116) can be solved uniquely for the ~~ 

and the }. 
771 

• 
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4.6 . SINGULAR SEGlvfENTS {MASSLESS ELElvfENTS) 

In some simulations, it may be desirable to ignore the mass and/or 

particular components of the ine:rtia tensor. This is feasible if sufficient 

constraints exist to define the motion (i.e. the system matrix is non-singular.) 

Because of the generality of the program, it is difficult to establish a necess­

ary or sufficient condition for the assurance of a non-singular sys tern rna trix. 

But, for example, a segment connected between two other segments .. in a chain 

with at least ·one pinned joint may be assigned a singular mass or inertia 

matrix. 

The program will accept these singular segments without special in­

put. If the mass or any principal component of the inertia tensor is zero, the 

program will treat that segment as singular. It is assumed that the user will 

supply sufficient constraints to avoid a singular system matrix. 

The effect of this singular feature is unknown, but it is conjectured 

that if a mass or inertia component of a particular segment is very small, the 

use of a zero value may eliminate undesirable modes of oscillation in the 

system. ·As a matter of interest, the program will accept negative values of 

mass and/or principal components of inertia*. 

*In the spring of 1973 Dr. Ovenshire asked Calspan to make a series of runs 

using modified masses· and inertia tensors.. Dr. Kane at Stanford University 

had shown that in a connected set of rigid bodies that the definitions of mass and 

inertia were not unique. Calspan does not know what Dr. Kane's method is for 

determining equivalent systems but the following theorem was proved by Dr. 

Fleck at Calspan and used to compute a~ccurate equivalent sets. Dr. Fleck 

assumes that this must be Kane's result. 

.. ,, 
,.; 

'!,, 
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Theorem on Equivalent Systems. 

The following is a proof for equivalent systems applied to a system 

of n rigid bodies connected by joints. Consider n rigid segments linked 

together in a tree structure. That is there is only one path through the 

s~ructure which leads from any segment to any other segment. 

Define: xk be the location of the center of mass of the kth 

segment 

~ be the mass of the kth segment 

~k be the inertia matrix of the kth segment 

;;; k be angular velocity of the kth segment 

~j be the location of joint j relative to the center 

of mass of k th segment. This is defined only for 

joints linking segment k to adjoining segments. 

f". be the constraint force acting on segment k at joint j 
J 

which prevents the joint from separating 

F~..t be .the lth external force acting on segment k 

-
Pt.( location relative to c. m. of point of application 

of the lth force on kth segment 

Tk be external torques (couples) acting on segment k. 

The equations of motion of this system are:, 

?n ..:.:.. \-
K. XI<. + ~ .f,_. 

,.. "J 
= L F_K.t_ 

L 
1<.. = 1, N 

d( 1', ;;; ) +\ iff 1<. K. ~ .,.kJ GJ ~- = I f"-f 
'J .,(, 

~ Fk.l + ~. l(z1,fl/ 

1 

114 

(linear) 

(4.122) 

(angular) . 

(4.123) 
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Subject to the constraints 

X ... -;:-k. "'X:.t+t'd. 1<. ' J J'.J -j. " 11 M/,,•f 
(4.124) 

Note that the sum over j in the linear and angular equations is 

taken over only those joints which are directly connected to segment.k. 

Consider the transformation of variable: 

* mK. 

* •. 
PK 

-* 
.,. kj 

~ 

f'Kj 

..... * 
XI<. 

= 

= 

= 

= 

= 

N 

r mK .,. 81< 
/(.s1 

ro .. r Sk. 
1<.. I J 

-.. -
rl:j . G' ( -r~j 

1'~eJ· .,. CK.. 

-
~j + C,K 

XK- CK.. 

-,. it 
.pl<.j . : r Kj + S K. a-r x . + 'f". ) 

J -~ K J 
d-l' 

s =0 
K 

~ 

(4.125) 

where 8kj is the sum of the 81, of_ the segments which may be reached 

through jomt j from segment k. The Ck are determined by the relation 

7?1~ c 
K K. = L 8"J . -r"j 

i 

Theorem: This transformation leaves the equations invariant; 

that is the new equations of motion can be written as: 

m~ x; ... L 
. - i-

d ( tD* Zi) ) + \ -* . -)(-
. - TK K i..J -rl<" ® .f.kj d-t . . J 

.. - t . 
Subject to the constraint 

.-If -* 
XI< + rkj 

; 
' .•· 

-"* ) -
I i- K = L ,: k~ 

t. . 
) -If -= L fk,t \9 Fk_t' 

.t.. 

-* _tf s·X +Tr L. J 
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The proof is straightforward by substitution: 

~ ...!..-!< -~ 

ml< xk. + ~-FK. 
J :J 

= (ml<+ Jk) (~~;- e~) f- ~ (~. +ok..(ik -1- ~.)) 
. J J J ".'. 

. •• -a. !.!. . •• . .!.!...-Jt 

= m~c x~c. -r I:fk·- 1t11< ck t- I d~c· ~- + ( cfl<. +-L J;..) xK 
j J. j J J . i "J 

Then 
~ ::.. ~ -k 

/?1/<. Xf< + ~fl::. 
J J 

"' In/<.~+ f fkj 

because 
/Ylk.C!I<. = 

~~ 

;;[ JK. YKj 
j J 

and 

.... 
xi< -1- r/<.j 

_.'fir - ~ 

~ x ~:. + ~'"~ej 

61< + ~ JKj -= 0 
J 

For the angular equation, consider the following substitution: 

....... * - .., -" __..· - -
~ ~""~e· ® ft. - 2: f~(J ® FK, = L: ,...K' ® fk. -
j J J .( .... j' j .J 'J 

+ ~® E-1/ - ~ ®(m; "-i; +4-fK~) + 
. . j J . . . J '.} 

'2 fK,t ®if-f 
,l 

;- akj ~J® r x/ + ~Kj~) .. 
rearranging 

- 7t ~~ -it: f rkj ® fkJ - f PK., ® Ff:..t = L. F~c·® ft:.·- :L.j.x..,® F;:, + (~(h-F~c· 
j J J) A;,< J JJ 

- frl ,. ek) ® -j(K i- z dk· "fie ® t~ 
):. j J J J 

but 
~ cJ~:. E ... ® ( Fk ~) 
j :J".J J 

= · - :L J .1:· F,~:. ® _d. [ "F ~ ~. w ]· ' ·. ·: 
j . :J J d-t . KJ . . . 1<. . . . 

~ - d [~ t5 - * c- - )J · dt. . ~J· r~;:. ·<» ~""a::·® wt:: 
. J J J 

which results in 
-it -~ _., -

L. r~. ® fK. - ~ f~.t ® Fk.t = 
j J J J 

~ ~J·@ ~- - L ~.® ~" - 4_' Z 6;. h~·~ (~_(jW~:J 
J J ..( J )._.. .., d t j J J . J 

.. 

r ( ~ 6~:-. rk. - m; c ... ) 69 ~; 
J :.J J ,... 
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4. 7 ' DESCRIPTION OF THE MATRICES IN THE SYSTEM EQUATIONS 

Now that the constraint relationships have been derived, it is appro­

priate to discuss the overall set of system equations indicated below in matrix 

form. 

MX'rA.t1 ffAz, Cf=7.4. 

¢ w + Az1 f r A22 -t f A 2 , ~ + Azt- 'L "" Uz. 

with constraint equations of the form: 

.L~ui"f.B12 ~ -rB.t3 f= J{_ 

-4~ ~ r.Bu t = tf 

.133.1 X -r133Z ~ T .133$" Cf-= ~ 

B+z w = v+ 

linear acceleration 
(inertial ref.) 

angular acceleration 
(local ref.) 

(4.128) 

(4.129) 

joint linear position (4.130) 
constraint ·-· 

joint angular position /c4.lil) 
constraint · · 

other constraints* 1(4~l32) 

flexible element constraints 
(4.133) 

When discussing the matrices of vectors of the model, it is convenient to talk 

in terms of the 3 x 3 submatrices, or 3 x 1 vectors that are involved. For ex­

ample, the inertia matrix ~for a model with N segments may be described as con­

sisting of N, 3 x 3 submatrices ~· . The matrix~· is a diagonal matrix (since 

we are using principal axes as a coordinate system) with the 

*Note, for the sliding constraint, or when tension elements are used,~~ 
are not the transposes of A~ andA~. Thus when a sliding constraint or 
element is active the system equations are not symmetrical. 
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diagonal elements equal to the components of inertia about the x, y, and z 

local axes of segment i. The matrix ¢ is the diagonal matrix which is the 

collection of the n matrices ¢i . Similarly the mass matrix M is diagonal 

and is the collection of the submatrices 7-n£ ; which is a diagonal 3 x 3 

matrix with the mass of segment i on the diagonal. Thus, unless it is speci­

fically stated to the contrary, when we refer to the element in the i t.h row 

and J th column of a system matrix we are referring to the ij th submatrix. A 

diagram of the 1r1 and rJ matrices illustrating the above convention is pre­

sented in Figure ; 4.14. 

Linear Joint Constraint 

Consider the linear joint constraint equation derived in the previous 

section and repeated below for comparison. 

Xn. -Xm-.JJ: (rnj® ~n) +.JJ;:(rmj® ~m )=.Dn/[wm®(wm@rmjJ] -_lh-.t[wn@(w17 XrnjJ] 

Compared with the system equation 

4 1. X t B12 ~ -r .E13 f = Yz 

There will be an equation for each joint j for j =1,X. The 

matrix .B.tt will then be an NXJ' group of 3x3 matrices. For joint j there will 

be the identity matrix in row j column m and -I in row j column n of .Ba . A 

schematic diagram of .13'-'- is presented in Figure 1 4.15. Matrix .B1~ is also 

·J"x N with the entry for joint j indicated in Figure 4.1 . V.t. then is the 

right hand side of the equation and also appears in Figure, 4 .• 16 .. 
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N 
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...... -

ROWi 

,j 

mio o 
o mio 
0 0 m; 

COLUMN I 

I I 

~xo o 
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0 !1: 
o o';z; 

ROW I-

t 
COLUMN I. 

Figure 4.14. THE ith ENTRY IN THE MASS AND INERTIA MATRICES 
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S..2 

ROWj~ . a"' a" 

t t 
Cc>L. l:OL. 
TNT(j) jtf 

cx_s :_0 ·1 (r • ~)) 
-""' m mJ 

art .. on·1 (rnj ®) 

Iff • JNT Cj} 
11 ..,. j.-, 

v, 

ROWj~ r 

, .. om·1 [wm®(wm®rmj)] 

. -on·1 [wn®((l)o®rn,~J 

,Figure4.16. B12 MATRIX ENTRY AND v1 VECTOR ENTRY FOR JOINT j 
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Angular Joint Constraint 

The angular joint constraint equations have three different forms 

depending on the type of joint specified. These equations are the following: 

and .. 

t=o 

.D -t ·. 7)-1· 
l7 .Wl? -..v,., Wm = 0 

(I-h h.} (.JJ~1 wn -.IJm-1 wm}-rJ...hh. t 
= [( w~·hn )-(wm·hmJ] ..D;/ wn ®hn 

I 

free (ball & socket) joint 

locked joint 

pinned joint 

The matrix equation for the above equations is 

4 2 w r .13z-? t = 1{, 

Again for N segments and ::r joints ..822 will be .Tx N collection of 3x3 sub­

matrices. The particular entries depend on the type of joint specified. A 

typical entry for joint j is given for .1322 ,.132 _,. and~ in Figure:(4.17)·. 

Other Constraint Equations 

The distance, rolling and sliding constraints derived in the previous 

section are summarized below. The fixed distance constraint is: 

h { )?. [xm-xn .v~ rm ® wm- t .£{~rn. ® wn:J}r A.( .7-hh_}.f._=/{. 

~ =IJ (h· [.iJ;J'(w/Z®(w~®rn)) -.l);:{wm® wm ~rmJ] -~~ Jj 
The rolling constraint equation is: 

Xm-i17-}}m-L(..Imf rm J~ wm r-.1J;1 [-fn,. rn] "wn-Yj 

~ = p;J.[wn ® (wn ® (!n-rrn )~ .;..])71-.twn ® r~-j};: [wm®fwm~UnfrmJ) ]-41wm®r~ 
The sliding constraint equation is 

ht. [Jm- in -.lJ,;;.tCtmrr~) ® wm r.lJ: Pnf Yn)@ ~n J f A. (.1-I;IJ.}CJ=/{ 
~ = h { t. ~ -t t · Jl,uJ · · rot.. 
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See Eq. 4.16 
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i-= Wn· hn - wni hm On W~hn 

Figure 4.17. 822• 82 +AND V 2 MATRIX ENTRIES FOR JOINT j 



!· . 
t is the derivative of the normal vector at the point of contact and ~Z'DU 

is the expression for V3 used in the rolling constraint. V REI.. 

velocity at the point of contact, 

~d' X,:n Xn rlJ;;,L wm®{ ..lmrr:nr}-4,_-:tw71~{-fnf r") 

The matrix equation for the above constraints 

4zf f ~.z. ~ r .45 (j = 1-j 

is the relative 

Define L.to be the number of these constraints. The matrices ~3z 

and ~~2. then will be L x N and 1334 will be L x L. (See Figure 4.18.) 

It should be noted that for the sliding constraint the entries in 

and .B.32. are not the transposes of the entries in A13 and /12.3 • For example, 

B 3 t has an entry h t. but Ar.3 must have the entry nh. or the entry I (unit 

matrix) 

Flexible Element Constraint 

. The constraint equation for the flexible element is equation (4.94). 

The.matrix form of this equation is written as 

B.,z. w = Vt 

Definition of the System Matrix 

The system equations, ( 4.128 - 4.133 ) can be written in general 

matrix form as: .. sx ':' u.. (4.134) 

where S is defined as the system matrix and the components of equation (4.134) 
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15n= h t-.lJ,z-1({.-tnrr,)s 

• • M N 
COL. 
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1 
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COL. 
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AT THE POINTOFCONTACT 

Figure 4.18. 831 , 832, 835 ~nd V3 MATRIX ENTRIES FOR ADDITIONAL CONSTRAINTS 
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SECTII)N 5 

SOLUTION OF THE SYSTEM EQUATIONS 

The system contains 6N+6M+3L equations. The current version 

is dimensioned to handle 30 segments plus the vehicle and ground with 21 joints 

and 20 other types of constr·a ints yielding 420 equations. 

Due to the large system size, sparse matrix techniques are 

employed. In addition, since M and(/) are diagonal, special subroutines 

(DA UX .. ) were written to produce· the reduced set ~f equations involving only y . 
the constraints by block reduction of the system equation (4.135) 

.. 
~,f r ~z -t -r 'is lj -r 'i1' '"' .. v, 

... --,e,~f + ·en t- + c.~6'6 + . Cz+ "t' .: Vz 

c,~ ..P + e~, t- -r e~~ S -~-. . c~,_ "l" = v.· 3 

e/f f + ".14- ~ ;. C.s+ 3- + t:.,.fo 'l:" -= "~ ,. 

The above equations are solved by subroutine FSMSOL which is a routine using 

a Gauss elimination process specifically designed for sparse matrices of the 

type encountered in the model. The current version of FSMSOL takes advan­

tage of the symmetry when symmetry exists. Although the equations are 

written in a symmetrical form, the addition of the sliding .'constraint and the 

tension elements destroy symmetry. 

After FSMSOL has computed f, t, q, and T subroutine DAUX com­

putes the linear and angular accelerations from equations (4. 54) and (4. 55) 

5.1 SYMMETRY OPTION 

If either of the symmetry modes is exercised modifications are 

made in DA UX after the contact routines are executed and before the solving 
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of the system equations for T,of,~ and 't'. The .following tables indicate the 

specific symmetrical configurations available by specifying elements of the 

NSYM array and the corresponding modifications in the DAUX routine . 

. NSYM(J) = o 

NSYM(J) = J 

NSYM(J) = K 

NSYM(J) = -K 

,NSYM(J) 

= 0 

= J 

= K(K>J) 

= K(K<J) 

=-K{K>J) 

= -K{K<J) 

. , 

Normal three dimensional motion for body segment J. 

·Therefore a complete blank card will enable the pro­

gram to operate in a normal manner. 

The motion of body segment J will be restricted to the 

x- z plane with no lateral motion. Hence it will be two 

d imens iona 1. ..,. 

Body segments J and K are to remain symmetrical with 

no lateral motion. The motion of each will be replaced 

with their average and restricted to the x-z plane. 

NSYM{K) must be equal to J. 

Body segments J and K are to remain mirror symmet­

rical with respect to the x-z plane. Equal but opposite 

lateral motion is permitted. NSYM(K) must be equal to -J . 

I f=UL.,, U2 and U2 I X .z 

I no change 
I f -o I J-
I 

f =o I J 

I f -o 
I J-

. I 
fJ=(fJ-fK) /2 I 

j 
I 
I 

I fJ=-fK 

..---------- ----

I 
! 
I 
l 
I 
I 
I 

f=Ul , Ul and U2 
X Z y 

no change 

no change 

fJ=l/2(fJ+,fK) 

fJ=fK . 

fJ=(fJ+fK)/2 

fJ=fK 

* Reference to the x-z plane are to a plane parallel to the x-z inertial plane. 
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SECTION 6 

COMPUTATION OF JOINT TORQUES 

For purposes of computing torques at the joint a separate coordinate 

system is defined for the joint. The joint coordinate system is related to the 

principal axes of the segment by the standard yaw, pitch and roll angles as dis­

played in Figure 6.0. Note that the joint coordinates are defined for both seg­

ments that are attached at the joint and joint torques are then computed using 

the relative angular orientation and velocity of.these two coordinate systems. 

These two coordinate systems are fixed in each segment and do not move relative 

to the segment. 

As an example consider the two coordinate systems presented in Figure 
. A A 

6.1. The hA and h8 displayed there would correspond to theA~3 and a-2 axes re-

spectively. The hA and hB axes would correspond to the ~3 • ~2 axes defined for 

the adjoining segment. 

Joint torques in the program are computed by a choice of three routines. 

Subroutine VISPR is described·in Section 6.1. It is used to compute torques in 

the standard ball and pin joint. A special model of a mechanical joint termed 

an Euler joint. is described in Section 6.3, Subroutine EJOINT. This is based on 

the standard Euler angles as displayed in Figure 2.8 using three axes of rotation. 

Either VISPR or EJOINT may be used with or without the global graphic joint stop 

representation described in Section 6.2. 

The ball or pinned joint may lock. The Euler joint may lock on any 

combination of its prinicpal axes. If a joint goes from a free to a locked state 

or if the Euler Joint changes its state (free or locked axes) a special impulse 

subroutine (IMPLS2) is called to correct the angular velocities of the segments 

so that the required components of relative angular velocity of the adjoining 

segments (those connected by the joint) are set to zero. 

The ball joint is either free or completely locked. The pinned joint, 

of course, can lock on only one axis, in which case it is completely locked. 

The Euler Joint has seven different locked states and one completely free state. 
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The decision.to unlock a locked joint is made by comparing the 

locking torque to an input torque that is prescribed by the user. If the 

locking torque exceeds the prescribed level, the joint is unlocked. In an 

Euler Joint, the user may specify a breaking torque on each of the three axes. 

The user specifies a minimum torque and a minimum relative angular 

velocity at which the joint may remain unlocked. If the locking torque or the 

velocity fall below these specified levels, the joint will relock and the vel­

ocities corrected by. use of the impulse routine. 

· The spring functions used to define the restoring torque on the ball 

pinned, or Euler Joint are defined in Section 6.1. In this definition, a linear 

torque vs. angle is prescribed until a specified joint stop angle is reached. 

For angles greater than the joint stop, a quadratic andcubic restoring torque is 

added. This effectively defines the joint stop as a 'soft' stop instead of a 

'hard'.stop. That is, the angular motion of the joint may actually exceed the 

specified stop but a progressively increasing restoring torque will.be applied. 

When the Globalgraphic option is used, the restoring torque can be defined using 

the general function definitions as described in Section 7.5. 

The user has the option of specifying that an impulsive torque be 

applied when a joint first enters or reenters a stop. In a ball joint, this will 

be applied on either the flexure or twist axis. For an Euler Joint, this torque 

will be applied on the particular axis involved. If the Globalgraphic option 

is used, an impulse may also be _specified on the axis determining the Global­

graphic equation • 
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Figure 6.0 DEFINITION OF THE JOINT COORDINATE SYSTEM 
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6.1 SPRING AND VISCOUS TORQUES 

Subroutine VISPR computes the torques at the joints as functions of 

the relative angular orientation and velocity of the adjoining segments. The 

spring and viscous coefficients specified on the input cards are used for the 

functional evaluation. The coordinates used for the joint torque computation 

are illustrated below. 

1 hA®h~ 

I 
--I e ( f .... 

.... ~' -
hB 

I 
he 

hA 

I 
hA 

Figure 6.1 JOINT FLEXURE AND TORSION (TWIST) 
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Two orthogonal unit vectors are associated with each segment at each 

joint. LethA and h8 be the vectors for segment k(k:jnt(j)) and h 1A and h 1

8 
be the vecto.rs .for segment j+l. In the rest position (no torques) hA is aligned 

with h 1A and h8 is aligned with h 1

8 . The present input ro~tines.~llow the user 

to specify the orientation of.these unit vectors with respect to principal ,co-

ordinate system. of the segment. Thus, for each joint the user specifies the 

yaw-pitch and roll angles of the axes of the joint as they are located relative 

to the prinicpal system of segment k and as they are located relative to the 

principal system of segment j+l. If all zero angles are specified for any of 

these segments, the hA vector will be parallel to the z axis of the segment and 

the h8 vector will be parallel to the y axis. 

The flexure angle (e) at the joint is computed from the relation: 

{} = CArj- I (A A· • h~ ) 
(6.1) 

The magnitude of the flexure torque·is computed using the flexure spring co­

efficients. The torque vector is parallel to the vector hA ® h 1 A. 

The twist angle (~) may be computed from the relation: 

I/"' ') ¢ = ~ - ' Irs • h B (6.2) 

where 'h8 is the unit vector obtained by ;otating h8 through the angle e 

about the hA ® h 1 A axis. In relation to Euler angles e is nutation and rp is 

precession plus spin. 

The rotation operation·is · 

'h8 = ( p.p. h8 + {hs- P..JA-· h8 ) CA1S e + Mm e p. ® h8 

where JL is a unit vector in the h A ® h 1 A direction. 

The magnitude of the twist torque is computed using the torsional 

spring characteristics. The torque vector is taken along the h 1 A axis. 
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For a pinned joint, only the flexure torque is computed. 

The present routine computes a viscous torque from the magnitude of 

the relative angular velocity vector using the flexural viscous characteristics. 

The torsional viscous characteristics are not used by the present routine. The 

viscous torque opposes the angular relative velocity. 

The spring (and stop) torques are computed by subroutine EFUNCT 

which uses the following algorithm to compute the torque T from the parameters 

s 1 , s
2

, s
3

, s
4

, and s
5

, as illustrated in Figure 6.2. 

If ·I e I ~ s5 

T = s 1 1el 

If lei > s5, an additional torque T
5 

is computed as 

T
5 

= ~2 (jej-s5 ) 2 + s3(jej-s5) 3 

If a< 0 (unloading) T is modified by s 

T =s T s 4 s 

For small values of I e I the routine interpolates between the 

loading and unloading characteristics. 

The total torque T+T is -returned as the function value. 
s 

The coulomb and viscous torque, as illustrated in Figure 6.3, is 

computed in subroutine VISCOS from th~ parameters v
1
,v2.v3 in array VISC . 

The algorithm uses the following expressions: 

if jej < V
3

, Z = V3/(2-jej/V3); if jej > v
3

, Z = lei 

= V + V /Z 1 . 2 
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where 1~1 is the magnitude of the angular velocity. Thus v
1 

is the linear 

viscous coefficient and v2 is the constant coulomb torque which is reduced to 

zero quadratically as w ~ 0. This .is done for the purpose of avoiding numerical 

instability in the integration. These effects need·further study. 

w a 
a: 
~ 

., 
·' 

. . .2 a 
s1 B + s2 1 e -s5) + sa 1 9 -s5) 

ENERGY 
DISSIPATION 

2 ' . a s1 8 + s4 ls2 1 e -s5) +sa 1 9 -s5) 1 
9• s, I 

I 
I 
I.,_ 

I 

s5 

9 (RADIANS) 

JOINT STOP 

Figure 6.2 JOINT SPRING TORQUE 
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JOINT TORQUE DUE TO RELATIVE ANGULAR VELOCITY AT THE JOINT 

COULOMB 
TORQUE 

VISCOUS 
TORQUE 

v ,------
2 1'&11\p 

Y: . ,. 

t 

\'~ 
\ 

V 3 ( l.tll (RAD/SEC.) 

6J IS THE RELATIVE ANGULAR VELOCITY 

.v1 CA) 

I w I (RAD/SEC.) 

Figure 6.3 JOINT TORQUE DUE TO RELATIVE ANGULAR VELOCITY AT THE JOINT 
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6.2 JOINT STOP MODEL 

6.2.1 General Features 

Joints always have definite restrictions on orientation which are 

imposed by the internal or external geometry of the joint proper. Two types 

of restrictions are recognized. The first type. which limits the number of 

degrees of freedom in the joint, can be treated by holonomic constraint rela­

tions, which are discussed elsewhere in this report. This section is concer­

ned with the second type of restriction. which does not· limit the number of 

degrees of freedom. but which bounds the range(s) of variation of the angle(s) 

which express the orientation of the joint. These bounds are usually termed 

joint stops (or, on occasion, joint-stop contours when the joint has two or 

more degrees of freedom). Since the treatment of such bounds in the case of 

hinge joints is covered elsewhere in this report. this section is devoted to 

the discussion of such bounds in the case of joints with two or three degrees 

of freedom. 

It is clear that in the most general case, the bounds on the variation 

of a given orientation angle are functions of both of the remaining orienta-

tion angles. For reasons brought out in the next subsection, 6.2.2,·:the model pre­

sented here is limited to joints for which the bounds on a given orientation 

angle depend on only one of the remaining orientation angles. As will be 

shown, this restriction of the model leads to a particularly simple descrip-

tion of joint stops in terms of the global-graphic representation. The gen­

eralization of the model for more general types of joint stops awaits future 

development. 

The next subsection also provides the groundwork for the model 

formalism which is developed in the third and fourth subsections. In the 

fifth subsection, of, this section the stop-torque formalism is applied to the 
spheri·cal~coordinate representation of the joint-stop contour. 
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6.2.2 The Global-Graphic Representation 

A joint connects two members which are here designated Segment 1 and 

Segment 2. The orientation of the joint is completely prescribed by the 

specification of this orientation of Segment 2 relative to Segment 1. Figure 

6. 4 depicts three orthogonal unit vectors. d-1 , ~ , ~ which are fixed rigidly 

in Segment 1. and a unit vector~ F . which is fixed rigidly in Segment 2. 

STOP CONTOUR e • e0 (CJ») 

,. 
(1'2 

.Figure 6.4· JOINT STOP COORDINATES . . 

The orientation of r relative to 1 is completely determined by the spherical­

coordinate angles e and ¢ . More generally. the orientation of r can be 

specified by two independent coordinates. u :t , u z which are functions of e and 

¢. 

If the joint has two degrees of freedom its orientation is completely 

determined by the orientation of r; further. any bounds on the orientation of 

r are functions only of u~ and Uz. In this case. the bounds on the orien­

tation of r can be represented by a single closed contour on the surface of a 

unit sphere which is centered at the joint. This representation of the joint 

stops is termed the global-graphic representation. 
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lf the joint has three degrees of freedom, its orientation is not 

solely determined by the orientation of 1:, but requires additionally the 

specification of the relative orientation of a second unit vector, 3r , which 

is fixed rigidly in body 2 and which is noncolinear with r . Further, the 

complete specification of the relative orientations ofir and s , depends upon 

three coordinates U~JUZ,~· As before, the orientation of r is still a function 

only of u1 and uz. However, (depending on the joint geometry), bounds or 

stops on the orientation of~ can be functions of all three coordinates u1 ,u~ 
u3 • In this case the global graphic representation of the stops on r would 

consist of a family of closed contours on the unit sphere, with u3 ·as the para­

meter of the family. A similar representation could be introduced for stops 

on the orientation of S . 

As indicated in the ·first subsection, the joint stop model considered 

here is limited to joints for which the bounds on the orientation of r are 

functions only of u~ andU2 • Also the model does not contain provisions for 

including those bounds on the orientation ofs which .are distinct from bounds 

on the orientation of r. 

A 
In applying the model, it is important that the coordinate system ~1 

uz ~ and the unit vector r are chosen so that the reference orientation (see 

Figure 64) is within the joint-stop contour. Also, it is necessary that when 

contour is expressed in the form 

e = e
0 

( ¢) 6.1 

e0 (¢)is a single-valued function of¢ . Fortunately this condition is satis­

fied by the joints of interest. The version of the model which is presently 

programmed (and which is discussed in the subsection 6.2.~ employs the repre­

sentation in (6.1) for the joint-stop contour. However, the more general 

model developed in the fourth subsection is not limited to the representation 

in (6.1). It is based on the employment of any coordinates u~,u~which are 

adeq~ate for the specification of the orientation ofr. For example, if the 
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~top contour bounded e in the range o~ G~::, one could employ 

ut. ::- r · e.t. 
- A u.2 =- r • e.2-

Or, . more . generally, u 1 could be equated to r. ~3 , and Uz would be identified 

with r, ~ 2 for some ranges of orientation of r . and with r, ~ ;t. for other ranges 

of orientation ofr. This particular choice of coordinates would lead to a 

more complicated representation of joint-stop contour than the employment of 

the coordinates e and¢. However, the evaluation of arctangents would be 

avoided, and so computer running time might be reduced. 

Throughout the development, the equation 

f (uu u2)-= 0 
(6. 2) 

is employed for the joint-stop contour. This contour represents a hard stop. 

As in the case of the hinge joint, the hard stop is replaced by a soft stop. 

That is, no stop torque is applied to the joint when the terminal point of~­
is contained within the joint-stop contour in (6.2). But when.the terminal 

point ofr is outside the joint-stop contour in (6.2) a stop torque is applied 

to the joint. This torque acts in such a direction to tend to restore the 

terminal point ofr to the region inside the joint-stop contour; and the mag­

nitude of the torque increases with the extent of penetration of the terminal 

point ofr into the region outside the joint-stop contour. The general 

approach which is taken to obtain a stop torque with the desired characteris­

tics is brought out in the remainder of this subsection. The detailed develop­

ment is given in the following subsections. 

~ 

The stop torque, M, can be expressed as the sum of stop torques in 

the direction of and perpendicular to the unit vector~. It is clear that a 

stop torque in the directionr tends only to produce rotations of about the r 

axis. Such rotations ·could not restore the terminal point of~ to the region 

inside the joint-stop contour hence is not applied. I~ is clear, therefore, 

that M should be perpendicular to r . This perpendicularity is assumed by the 

relation: 
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M = :;; F 
(6 .3) 

!tis convenient to visual~ze.F as a force applied at the terminal point ofr 

In actuality, of course, the desired restoring action is obtained by applying 
. ....::... ~ 

the torque M to Segment 2 and a torque -M to Segment 1. 

The forcelPwhich is required to obtain restoring action is not unique. 
. . . ~ . -

First, it is apparent from (3) that components ofF which are parallel·to r 

do not contribute toM. Therefore, F will be chosen perpendicular to r . In 

the case of a hard stop, F could (conceptually, at least) have components 

parallel to the joint-stop contour. On the basis of symmetry arguments, such 
·....::... 

components would not in general serve a useful function. There~re, F would 

be chosen in a direction perpendicular to the joint-stop contour. In the 

generalization to a soft stop, it is logical to choose liin·a direction which 

is close to perpendicular to that portion of the joint-stop contour whi.ch ·is 
... •• •• • - ··~--· • • •• : 0 

nearest to the terminal point ofr· . In accord with the desired character-
, ~- _.::., 

istics of the torque, M, the magnitude of the force, F, should increase with 

the extent of penetration of the terminal point ofr into the 'region outside 

of the joint~stop contour. The joint-stop model has been designed so that 

the force ~.-displays the characteristics just discussed. The model is de­

scribed in the following: 

The .function f(u1 , u
2
_} is defined so that 

(i) f (u:u uz..} = 0 on the joint-stop' contour 

(ii) The contour f (u:t., u 2.} = c encloses or is enclosed by the 

contour f ( U:t, z.t.2)=0 • (That is, these contours do not 

intersect) 

·(iii) On the contour f(u.z., uz) :::B is a single valued function of (J • 

(iv) The s~rface gradient of f(uLJu2 ) is in the direction of the 

external normal to the contour. 
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Figure 6. 5 depicts the geometry for the determination of the force F. 

This figure shows polar ( e vs¢ ) plots of the contours of intere,st. 

(u;,u~) 

~f (u1 u2) •f (u;,u;) 

. Figure 6.5 JOINT STOP CONTOURS 

u~ 7 u; denote the coordinates of r. The force F is obtained from a differ­

ential approximation to the construction described in the next paragraph. 

• I I . 
Through the po1.nt ( ut. 1 U z ) the contour 

. f(u:t,u.z) =f(u.;,u;) 
(6.4) 

can be constructed. Then a geodesic of the sphere (depicted by a broken line 

in the figure) can be constructed to pass through the point ( ZL; 7 uJ.) and to 

be perpendicular to the contour in (6.4) at the point. The geodesic will inter­

sect the joint-stop contour ( f(u:t., ZLz.) .. o ) at some point ( ui•, u~ ) . The 
......... 

force F is parallel to the geodesic tangent at the point (Zt.). , u;_ ) (and in the 

opposite direction to the external normal to the contour in (6.4) at the point 
~ 

( u~, u.~ ) ) . The magnitude of the force F is an increasing function of the 

magnitude of the vector .1 r given by 

- - /_ 1 ') - /_ o o) _Llr=r(u..t,u.z -r(u.:t.,uz (6.5) 
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In the model, the force F is obtained exactly as just described with 

the exception that (u.~ -u/) and u;,- u.;, are treated as differentials, and I:J.r 

and f ( u ~ , u i.J- f (u:t. ", u z" ) are evaluated in the. differential approximation. 

As a preliminary to the mathematical development of the model, an 

expression.will be derived for the surface gradient in terms of the general 

coordinates u.L ~ u.t • 

6.2.3 The Surface Gradient 

The surface gradient is just the operator - ii®(n®v} where v · denotes 

the usual three-dimensional gradient operator, and n _is. the normal to the sur.., 

face of interest. In the current application n is equated tor . It is con­

venient to employ the modified surface-gradient operator given by 

vs = - ~ r ~ (-r g) v) . 
(6. 6) 

where t denotes the radius of the spherical surface .. In the case of the unit'· 

sphere , ~ = 1. Thus, for simplicity, in the rest of this section Vsf will 

be termed the surface gradient of f . 

The fundamental property of the surface gradient which is utilized in 

the model is that the vector given by 

. 'i7s f (u11 u.2.J 
I I 

U.z = u. .1. , u. :z. = U.z 

is normal to r and to the contour 

f (U.~, u.:~) = f (u;, u;) 
(6. 7) . 

·.· •.'. 

at.the point u.t=-u~,ZL.z= u~ • As stated in the previous subsection,f(u:tu) 

must be chosen so that Vsf evaluated at ( u; , u:!, ) is in the direction of the 

exterior normal to the contour in (6.7). 
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The surface gradient of any differentiable ftmction V of· u1 and U;z, 

satisfies 

d.v=dr·VsJ/ (6. 8) 

where~" is the total differential of v and4'r is the total differential·. of r . 
d: is expressible as a function of ui and uz. . Its total differential may be 

expressed 

d F ~ ~dut r ~2d ut~- (6. 9) 

where 

__,., -·a..=il. 
t. ifu. 

L 

i=1,2. 

(6.10) 

The unitary vectors, di , are not in general orthogonal. Thus, in accord with 

the formalism for nonorthogonal curvilinear · coordinates, reciprocal unitary 
~J{; vectors a. ·.: 1; z) are introduced. These vectors are coplanar to the vectors 

. ~ (i = 1,2) and they satisfy 

;if . -aJ = J' l.i (6.11) 

where d't.j denotes the Kronecker delta. 

From (6.8),(6.9), and (6.11), it is readily concluded that 

.....:>.1 
Vs V = a. d..lL t- d. 2. .JilL 

t?ui J t.{;e 
(6.12) 

Equation (6.12) is the general expressioq for the surface gradient of a function 

V of· "Ui and u2. • 
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6.2.4 The Mathematical Formulation 

This subsection is devoted to the mathematical development of the 

stop-torque model described in the second subsection. As before, u./, u. z,
1 

denote the coordinates of r . and u.;} ~;, • denote the co~rdinates of the 

intersection of the joint~stop contour with.the geodesic,depicted in Figure 

(6.3). From (6.5). 

A_. -/. I ') -r o oj 
Ll r - r 1 u:t. , lL ;z. - r: u,~ _, u z (6 .13) 

As explained in subsection 6.2.2, ..1 r is evaluated in the differential 

approximation. From (6.9) and (6.13) 

....:.. ~ 

.£1 r = d.i 4 Ut. rd.~~ U;z.. (6.14) 

where 

Llu.t = 
I o 

ui. -u, 
(6.15) 

~ I I 
and a..l is evaluated at ( u.t., Uz ) • 

Since ( u~, u~) lies on the joint-stop contour, 

f(u~, u;) =O 

or, employing (6.15) . 

f(u~- .d u1 , u.~- LJ uz)= 0 (6.16) 

In the differential approximation,· (6.16) becomes 

tlf{u;,u;;!Ju f r]/(u),u;)t1u = f(u
1
',u;) 

?u. , t tluJ_ 2. 
:t 

(6.17) 

The exterior normal at the point ( u;, U.2.) of the contour 

ffu~, U.z} = ffu.;' ~~) 
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is in the direction of the surface gradient V5 f(u..J.'JUz..'). From (6.12) 

, I ,-"':L ell'" - .2, dl'" Vs T(lL.z7lL2 }=ci -'t.t' ril. :;-, (6.18) 
(/ .z {/lL..z. 

-j I I 
Where a. is evaluated at ( u.t ,uz ) . 

Now, 4 r is the chord of the geodesic depicted in Figure 6.5. There­

fore, in the differential. approximation,6r is directed parallel to the sur­

face.grad~ent in (6.18). This condition and (6.17) uniquely determines~u~ 

and Ll u~. To evaluate ..6. u1 and ~ uz, (6 .11) is employed to reexpress (6.14) 

in this form (dot a and a with 6.14 to get coefficients of a' and a&) 1 2 . . . 
A - r~ _... ~ -=- ] ~:t. 

L.l r = ld. .x· ~Ll u1 r ct,£ c2..r. LlZL2 a_ 
(6.19) 

r~ -'>. __,. _, J _,_ 2. 
f rz L. ciz. .LllLz f- ci. .2. • dz L) lLz d. 

In the expressions for the final solution, the superscript 1 on u~ , u~ 

is dropped SO that U.l 7 ZL.z.are the coordinates of r. 
defined in the second subsection, is given by 

--"' . 

~ 

The stop torque, M, 

M = o if ( U.z, tl.e) is within the joint-stop contour (6.20) 

-=-.:.. M= -A (ILJ.'il) r@Llr 
ILJ r/ 

otherwise 

A (/~r/) denotes a suitably chosen non-negative, increasing function of the 

magnitude /IJ. r l of .::1 r, which is given by 

A- _,., __,. 
..u r = d..r.dZL_t>' cX.z Ll u 2 

(6.21) 

__... 
The unitary vectors a. L are defined in the previous subsection, and 

- [.d..zz ;;-a.r2 {] r . ·. 
LJ lL[- 2 .,{' .2] 

~..22 ~- 2 d. a~ 12- f-c:i1llz Ll ZLz-= 

[d..tt f2 - d. a G] f (6. 22) 

. ~22~~ 2. a..z2 fz{z fciuf:] 
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t::: f (lL.:o U2 ) 

,c = Jf/cu. I L (/ (. i::: 1,2 

~ -.:::. . . 
d.l.. . ; d. •. a. . l. ,j : 1, 2. 

J {, J 

The conditions on the function f(&1 ,Uz) are given in the second subsection 

of this development~ 

.• 

In the next subsection, M is evaluated for the coordinates e and ¢ · .. 

6.2.5 Application to Spherical Coordinates 

In the computer program, the spherical coordinate representation 

e-=eo(¢) 
~ 

is employed for the joint-stop contour. To evaluate the stop torque, M, in 

the coordinates e ,(/; the formalism of the above subsection is applied with 

uL = e ) u.z::: ¢ 
~A_:.. A. 

<i
1 
= e , a.~= ¢ suz e 

· f (lL.u lL2,)= e- e0 (¢) 
A · A 

Here e · denotes a unit vector in the direction of increasing e and ¢ denotes a 

unit vector in the direction of increasing ¢ . 

where 

~ 

The evaluation of M is straightforward. The final expression .is: 

for 

and for 

o< 

0 > 

eo(¢), 
___,_ 

eo(¢), 1/1-=o 

,_ deo{p) 
eo- CJ¢ 

~ -A (I LJ. 't I) ( rl si-ae r e e~) 
,; siai,e r( 8

0

1):l I 

/ !Jr/=!8-e/o/sinej ~---. y szn 2e r (eo 
The non-negative function A (!Ar/}is computed by employing the force versus 

deflection subroutine in the computer program. As noted above, the torque 
_::., __.::., 

M is applied to body 2 and a torque -M is applied to body 1. 
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6.2.6 Stop Contour 

·The representation of the stop contour is taken from the work of Dr. 
* R.E. Herron where he uses a trigonometric polynomial of the form. 

/'1 

. eo ( $) = L. cosl')-:t $ ( c2n-:t i- c.?.n sin $/ 
' . )')=~ . 

The degree of e depends on the particular joint. Stop contours and 

the corresponding numerical values for the coefficients as supplied by the 

Biostereometrics Laboratory of the Texas Institute for Rehabilitation and 
- .. 

Research are presented in Figures 6-6 thru 6-14. 

* See equation 11 pg 40 of Reference 14. 
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6.3 EULER JOINT MODEL 

As a means of more accurately modeling mechanical joints used in 

dummies, a joint termed an Euler joint illustrated in Figure 6l5 has been 

defined. For purposes of discussion consider a composite joint attaching 

segments 1 and 4. 

Figure 6.15 EULER JOINT 

The composite joint itself is comprised of two segments; segments 2 

and 3, and 3 pin joints. 

Joint 1 connects 1 to 2, rotation about hx 

Joint 2 connects 2 to 3, rotation abouthz 

Joint 3 connects 3 to 4, rotation abouth3 

. ! 

I ~ . 
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----------- -------- ---- -- --- ---·- ------· 

The equations of motion are: 

m .t )/.t r f:t =- u1 .t 

mzX~ -~ ~lz = Z£1 z 

"ff6 ;;3-12./ 0 = lL :L3 

m-~- x· -0 = u U· 

:.C(~.t w;) r r.ttr?J.lJ:t. ~ r- .J):t. tz = lL:t:t r.lJ. Z""1 

d:(fo~ wz)- r:L:/_®.1)2../.r_ r r zz«>.lJ:z/2,- .J)~t :t i.1J2.. t 2, = lLz~-lJ.e ~ t .l>z,l'.z, 

1-t( ¢.3~)- r.3zflJ .ljlz,f r33@.J)3~ -~ tz r.lJ3 t3 =-?.Lz-,~.1).3 ~"4 l'3 

~(~ ~)- r1'.3@-40 -~t3 = ZL33-.ZJ~ C:, 

with the constrai.nt equations: 

-i .,., -.I 
A.t r-4 r.a = Xz.f ..v..<!. rz.z 

.lJ. -:t X 7'\ -.t Xz.t- z r.z:z.. = 3 r ..v3 r32, 

1"1-.t 7) -1 
X3 .f .v, .r 33 :: X4 r .v 4- .r -1.3 

.·· 

and angular constraints: 

-~ t. -1 L -4 / /.z:t = l?z r; :u = /; :t. 

.J)z-:t);z2.. = .1)3-:t !J:JZ =Oz, 

.l{-'1;3 3 = J)~ -~1'3 ::. );3 
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.Where h~,hz,h3 are pin vectors parallel to permitted axis of rotation. 

The ft,fz,f3 are constraint forces, and t~,t2, and t3 are constraint torques 

at the joints. Also -z:-t , "Z"z and ~3 are addi tiona! torques generated at the 
joints (h . is pin vector h. as measured in system n.) 

nJ . J 

Define an axis system in segment 1 where 1the T axis is aligned with the 

pin vector h . Let~ be the relative direction cosine matrix associated with 

this system such that a vector r in the reference system will be transformed 

into the local system by iloc .. t == 11~2J:t. 1-'NT. • Define a .reference. system in 

segment 2 whose i axis is aligned with the pin vector IJ.:t and whose rx- axis is 

aligned with pin vector hz . Also define a system in segment 3 whose j- axis 

is aligned with the pin vector hz and whose x axis is aligned with pin vector 

h3 · (Note that h 1· h3 = cos 6, h1 · h2 = 0 and h2 · h3 
=· 0) Define an axis 

system in segment 4 whose}- axis is aligned with the pin -?3 • Let#~ be the 

relative direction cosine matrix in a manner similar to that used for segment 1. 

Let ¢ be the rotation of segment 2 relative to segment 1 about the ht axis. 

Let ~ be the rotation of segment 3 relative to segment 2 about the hz axis. 

Let y be the rotation of segment 4 relative to segment 3 about the 173 axis. 

Then 

JJz=lj(¢)~J):t. 
~ = 7i( e).lJz. 
.lJ.t. = /--4.r 1j.(vJ4 =It,. Tlj- ('f'"'} Tx(e} 7j (¢)~4_. 
lj (w.J;; (e) Tj.(¢) = ~..ZJ4 -4 -.z#~ 

here T (6) indicates a rotation through an angle 6 about the local X axis 
X 

and T (~) indicates a rotation through an angle ~ about the local z axis. 
z . 

Also note that TJ-(fi')?X(e)Tj..(¢; is the standard Euler transformation relating 

segment 4 to segment 1. Where ¢ is precession -e. is nutation and ¥'" is spin. 

Make the following simplifications: 

(1) The masses and inertias of segments 2 and 3 are negligible 

mz =- m3 = ¢2 =- ¢3 =- o 

(2) The dimensions of the joints are negligible 

r 2 .l= r.zz.=r32 =r33 =o 
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(3) No forces or torques act on segments 2 and 3 other than those 

produced by constraint forces and torques, or torques generated 

by the relative Euler angles at the joints themselves. 

(
u22 : u23 : 0) 
u12 - ul3 - 0 

These assumptions reduce the model to two effective segments (1 and 4) con­

nected by a massless joint. 

The reduced set of equations are: 

m.t x~ ,.. ~ = u.z.t · .£(¢z Zb1)"' r.ZL@ 4 ti -f -4 t:t = lL 21:. ,. 4 -z; Jt . 

-f -r f = o 1. z --4 t1 r ».e t z " -..2?z ~ -r 4, Z'z.. · · 

-+- f.c -o lz 13 - -4 tz..r-4t3 = -4_~,.~ '23 

777o~- x.¢-0 = ullt fr( P+ w;.)- r ~a Gif7 .1?"' ;j -4 !"3 = lL2 ~-..04 ?'3 

Since 
~=Tz =~ 

and 
t2 = t 1 - T 2 + T 2 

t3 = t2 - T 2 .+ 'r 3 

If we let t = tl - Tl 
' 

We may write the equations as 

m; X~ rfz = lLzt 

m-~-x~- ~ = lL.z+ 
(P.z"Uf) f r11 {?)4 ~ f .4_ t • lL2:t 

· ( ~·lb4)-.r43®..D4ft-..L?tt= lLz+ 
.JJ -:f. 7'l -:t X1 f :t ru=X4 f..v.¢ r43 

For the axes of rotation we have: 

for precession 

nutation 

spin 

¢ , hi =.lJ/hzt=-4.--.rhz.t, 
e ' IJ:l. =4-.zh2z=.lJ/'l;3.e, 
lj/ ' );3 .,.f)/1;33 = JJ./1;4.3 
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For the direction cosines, 
4=~(¢}~4 
4 = Tx (e) ..O.z. 
~4" lj(p-J.4 

Where liz. and If_,. are defined such that when ¢=e=-p.o, the local x. y, z 

axis of each system are aligned. 

Thus 
4=; (f) =4t "'"33 :);.; 

..?22, -(g)= );32. 

Explicitly for the );i in the inertial reference system we have 

or equivalently 

I{ = JJ/ ~-:t(j) 

1;,: 4 -z liz -:t lj"( ¢) {!J = -4-J!~ -:t(sc~g ~ 
I. - .l) -.1u -:t-r, /: )'/tJ n-z -.x {Cos~) 
//2 - ~ rt.¢. ""(ljl f o/ = ..v.¢. ~ ~-sz0zz ~ 

. IJ3 = -4--.1 I-t, -(;F) . 
The relative angular velocity is 

Thus we have 
n -.t n -.1 

jj lU' "'J./-f. W4 -ut. . ~ 
¢ r cos e p = h

1 
· L1w 

e - h · Liw-· 2 

cos e ; -f p = /;3 • LJ w 

It should be noted that a singular case arises when cos e = '!:. .l • For these 

cases it is impossible to distinguish between p and p from the rotation 

matrix ( 7)-('1') Tx (e) lj-{p)) alone, some auxiliary information must be used. 

Consider the case where all axes are free -

then 

t = cr:l;.r -!-/3h2.f(h3 
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wli.ere 

----------- ------------ -~-- -----

'" .... 

c( = -/~)p) 
~ = -y(e..eJ 
r= -'1J(110-f) 

--- ------- ------------- -- ·····------ ------

Where f, g, h are the torques generated on the free axes. 

Note that 
h .• IJ .... :t /or l1 2 3 //(. t ) ") 

,.?1 ·llz ::" nz ·h3 '"0 

);z ·h3 =Cos 8 

It should also be noted that when sin e = o the components of . 

angular velocity of segments 1 and 4 projected on the IJ.r.@h~ axis ~st be 

equal. This is a constraint in the system. 

Consider the case where the precession axis is locked. The constraint 

torque t must lie on an axis which is perpendicular to h2 and h3 • This axis is 
c 

* * h1 = h2 x h3 , h1 will be a unit vector since h2 • h3 = 0. 

t=- - tc rjJ/;2 r Tll3 = - Cc- g-/;2 -IJ03 
where * * * t = ah1 = h1 ·t h1 c . c. 

The constraint equation is a statement of the fact that the components 

of angular velocity on the hx axis of the adjoining segments must be equal. 

That is, 
-.t. -L - 0 hi . 1).! ~-.IJ,. w-1 - . . 

' * [ . ] . 

When the system is const~ained we will write the equations of motion as 
cL 

cL t ( ¢r w;} f- rz.t~·'-·4~ f- 4 Pte= ZLu >' 4 (t. rlc } 

dt 
dt 

(¢.¢lU.¢_)- r:{3®4{ --4Ptc= ZLz-t -4 (tl-tc) 

* * with the constraint (I - h1 h1 ·) t = (I-P) t = 0. c c 
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Where P is a projection operator with the property Pte"' 'tc 

The constraint equation in acceleration form may be expressed as 

f'~-JzQ;-1J/lfi4 J r A.~-? J tc = -h/[.1J;1zv; -.Z{/'l/4 J h1* 

Where 
. * *T * * 
p = hl hl = hl hl . 

IJ~ has the angular velocity of segment 1 and );3 has the angular velo­

city of segment 4. 

where 

Similarly if the spin axis is locked we have 

t =- - tc -fh1 - .9-h.?-

tc=a:.h3* 
*· 

and h3 = h1 x h2 

a.ncL 
* *iT 

p, h3 h3 

The rest of the development is the same. (h~ has angular velocity of 

segment 1 and h;z; has the angular velocity of segment 4.) 

where 

If the nutation axis is locked, then we find that 

t=-t-fh-hh· c 1 3 

tc =- ahz a.nd. 
* h2 = h2 

* *T 
p = h2 h2 

When any two of the axes are locked the unlocked axes is treated in 

a manner identical to that of a pin or hinge joint.· The constraint torque 

must be perpendicular to the axes 

1· ·tc·= o 

and the constraint equation is derived from 

In this case 

P= 

1 ~r-4-1 w;_- -4. -..t l//"4 J =- 0 
Z-h. h. r= -h.® ( );. flJ 

J ..; J J 
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' 

locked pair pin axis projection P 

¢) e );3 I-);3 h3 

¢,p IJ;z. f-h h T z z. 

e, p h:t. f-IJt nt T 
----- -----

When all axes are locked the constraint equation is 

.!J-1 .J) -1 . . 
.t u.z- -~~=0 

and P = I, the identity matrix. 
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c Table 6.1 

SUMMARY OF EULER JOINT RELATIONSHIPS 

IND I LOCK. TORQUE· cONSTRAINT EQ P(.l{'z/;;-]}~-.1.%)= 
. -· ·- .·: . 

p 

1 

2 

3 

4 

5 

6 

7 

8 

$ 

e 

1/1 

61/J 

¢1Jl 

¢e 
f/J87jl 

none 

-~)JlT 

/;2. )J2.T 

n3 h:/ 
I-b.r.hzr 
£-IJhT 

2.. 2 

I-hhr 
'3 3 

I 
noae 

tc-!Jilz -h/;3 

tc-fh.~.-hh3 
tc-f0_- !Jhz.. 
tc- fl;:t. 

tc- !Jilz. 
tc-hh3 

t' c 

~fh.~.-Jhz..-hh3 

-1 -1 
t.w = 02. w 2. - D 1 w 1 

*• * 
h1 h1·t.w 

*· * 
h2 h2·t.w 

. *• * 
h3 h3 ·t.w 

-h1 h1 · t.w 

-h2 h2 ·t.w __ 
-h3h3 ·t.w 

0 

none 

·-.r -..r./.~1 .JJ.-:111.-.rr/.)f..'!l h -.ru-.1/p} 4:.4 ~ {2/ J 4 = :1. .t j-111> (g/ 1 3 "".!2t F74(.2/ f' .. f(pJi). 
y=g(e.r.eJ 
h=h(I/1 P) ~"' (lJ/w; )r& /;1 1hz..= (IJ_/w; )®h.t r ¢ h 1 *, h 3 = (04 -\4)0h3 

* * * h1 = h2 X h3, h2 = h2, h3 = h1 X h2 

lj. (tP) Tx (e) T;- (¢) = ~4-lf'lf.t 
} . . . 

ri rp cos e =- 4 · (t.w), 

e : kz. ct.w) 
·* 

-$ sin e = h1 · t.w 

¢case f -,j = -0 · (t.wL * -tjJ sin e = h, . t.w 

Each of the functions f, g, h is defined as the sum of a spring torque, . 
a viscous and a coulomb torque as defined in Section 6.1 and illustrated in 

Figures 6.2 and 6.3. 
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SECTION 7 

FORCES PRODUCED BY CONTACT . 

The·present version of the program has four basic contact routines: 

(1) ellipsoid with plane 

(2) ellipsoid with ellipsoid 

(3) ellipsoid with restraint belt 

(4) ellipsoid with air bag 

Each segment has an ellipsoidal contact surface defined for it. 

Additional ellipsoidal and/or planar surfaces (finite rectangles) may be 

associated with each segment. The vehicle may have planar or ellipsoidal 

surfaces. Any combination may be used with contact routines 1 and 2. The· 

restraint belt may be attached to any segment (usually the vehicle) at two 

anchor points (these must be separate) and is assumed to pass around the 

principalellipsoidthrough a specified point associated with the segment. 

Belts may be associated with any segment, but it is assumed that the belts lie 

in a plane determined by the anchor points and the spec.ified point in the 

ellipsoid. The number of belts (8 maximum) is limited only by storage. 

In each of the first three types of contact, the force is determined 

by a force deflection routine which allows for energy losses (hysteresis), 

permanent offset, and impulsive forces. The force deflection is associated with 

each paired contact, hence it is important to ·specify a mutual force deflection 

characteristic which allows for the specific paired contacts being considered. 

For example a head ellipsoid contacting a planar dashboard should be assigned 

a different force defelction response than the upper torso (ellipsoid) contacting 

the same planar dashboard. Proper definition of the mutual force deflection 

allows the user to partially account for the deformation of the contacting 

segments. 

It should be noted that the contact routines which are inputted 

force-deflection characteristics compute the force as a function of only one 

parameter (related to the penetration distance) and applytheforce at a single 
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point. However, the modular structure of the program permits easy insertion of 

more sophisticated routines in which, for example, the force might also be 

made a function of penetration rate and/or the contact area. 

The air bag routine is special in that the air bag is assumed to be 

ellipsoidal and contacted only by surfaces (occupant segments or vehicle 

reaction panels) that also are ellipsoids. No contact forces are computed until 

the air bag is fully inflated and the motion of the ba~ is then dynamically 

integrated. Although several segments may contact the air bag, no provision is 

made for the interaction of simultaneous contacts, i.e., the volume and the 

effective area associated with a segment (or reaction panel) contact with the 

bag are computed separately for each contact.* The bag pressure is determined 

from the total change of bag volume, which is the sum of the volumes computed 

for the separate contacts, and the forces on the bag and the contacting elements 

are computed using the pressure and the effective contact areas. The computer 

program currently provides storage for a maximum of five air bags. 

A separate subroutine is used to compute the force resulting from 

a specific type of contact. The general pattern for defining the forces and 

torques produced by contact is the following: 

1. Detect contact. 

2. Determine the parameter (penetration) for use in the force deflection 
routine. 

3. Compute a normal force an~ friction force. 

4. Apply the total force and torque on one segment. 

5. Apply the corresponding reaction force and torque to the other 
segment. 

The following sections develop the method used in each of the four 

types of contact. 

*It should be noted that simultaneous bag contacts, if too closely spaced, can 
result in errors due to overlapping of volumes and areas which is not accounted 
for in the computations. 
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7.1 PLANE - ELLIPSOID CONTACT (SUBROUTINE PLELP) 

The geometrical configuration of the plane ellipsoid contact 

along with the appropriate variable definitions is presented in Figure (7 .1). 

The following equations refer to an ellipsoid A .attached to segment m con-. m . 
tacting a plane P11 attached to segment n. 

At the point of maximum penetration 

,·,. ).LAIIJr"'=.Om.On-t~= -t (7. 1) 

r ~·! >:.:· 

)1- is a scalar quantity 

t - is the outward normal to the plane in m' s reference system. 

t 1 is the outward normal to the plane inn's reference system. 

therefore 

or 

The ellipsoid equation is written in the form 

r r A r =1 rn m m 

)l:;.=·t rAm -:tt 

JL=J t r Am-:zt 

This results in 

r /It = -lf~tt-'YJ -l:r A;! -t..., 

The penetration distance p is given by the following equation 

where ;f 
p' ~ tr £ ~m +··rn. :J~t1 r L .£), (-x n.fXm]r.~ 

is the distance of the plane from x (see Figure 7.1) 
n 

(7 .2) 

For p <::. o no penetration has occurred, and if p > Zfk , 

the ellipsoid has fully penetrated. In both of these cases no contact is assumed 

and therefore no forces are generated. The assumption of no contact for full 

penetration is a crude method of preventing an erroneous contact when an 

object comes behind a plane from the side. 
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The point of force application can be specified as occurring 

at any point between the point ef maximum penetration to the point of inter­

section of the vector r with the plane. This point is the center of the ellipse m . 
formed by the plane-ellipsoid intersection.-* 

Then 

f!T?V= (1- j')r~ ~ t'(~P)r,.,. r4 
(7. 3) 

defines the point of application of the force as measur.ed from the c. g. of 

the segment m. Then 

j.., -= D,., D;;: lJ"'l + . D, ( i(/'71 - ">'tt) 
(7. 4) 

is the same point as·measured from the c. g of segment n. 

If the plane F:, is bounded (i.e a finite rectangle) the pro-

jection of y on the plane is checked to see if it lies on the rectangle by 
n 

comparing 

and 
0 ~ t [ Y'n -ct .z.. -6 j3 z, 

0 :::.. t J 9n- C(.3 ..::: /J .3 . (7. 5) 

t
1
, t

2
,· t

3 
are vectors defining the plane, t

1 
is the outward normal 

to the ·plane. The scalar quantities jl:t,/3:z. 1fi 3 .J <X.:z. .. a-3 define the 

location and size of the plane. 

If /3.2. or jl3 is zero or negative this check will not be ~ade. 

The magnitude of the normal force is computed by the force 

deflection routine using the penetration distance and the specific material 

properties. The normal force is then used to generate a friction force ex­

isting between the two contacting surfaces. Information concerning the rela­

tive velocity is important here, therefore the following equations are 

needed. The relative velocity between the surfaces at the point of contact is 

*If the plane is soft and the ellipsoid is hard, a value of,~=O seems appro­
priate. If the plane is hard and the ellipsoid is soft, a'value of 1=1 seems 
appropriate. 
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computed in m' s reference as 

Yz- =..Om (xm-X7) f wm. @S~m.- .on-z .on.-fwn~ Y'n) (7. 6) 

The magnitude of the normal component is given by t-rV~ • 
The tangential component then is 

Vrt= v;..- ( t r til"} t (7. 7) 

The friction force is computed as Cf {coefficient of friction) 

times the normal force. If the magnitude of the tangential velocity is less 

than one unit a ramp function is applied which allows the friction force to 

decrease to zero as the tangential velocity decreases to zero. 

The total force is then computed as 

f=lfnorlt-Cf I lnorl v .. t-/I~H:I (7. 8) 

The force -f is applied to segment nand f is applied to seg­

ment m. The torque ~'In® f is applied to segment nand '/m®f to seg­

ment m. 

7.2 INTERSECTION OF ELLIPSOIDS (SUBROUTINE INTERS) 

In the program it is necessary to recognize the intersection 

of two ellipsoids A and B. For the ellipsoid- ellipsoid contact routine 

(Subroutine SEGSEG) both the exterior and interior contact (ellipsoid A is 

interior to ellipsoid ~) are considered as indicated in Figure 7. z. For the 

airbag routine only the exterior contact is considered. The technique used 

is based on the following algorithm. 
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7. 2.1 Ellipsoid-Ellipsoid Algorithm 

If an exterior contact is specified the ellipsoids A and B are 

expanded or contracted about their centers until a single point of contact is 

achieved. If contraction was necessary to establish this single point of 

contact the ellipsoids are said to intersect, otherwise no intersection is 

assumed. 

If an internal contact is specified, ellipsoid A is contracted 

and ellipsoid B is expanded or vice versa until a single point of contact is 

achieved. If a contraction of ellipsoid A (expansion of B) was necessary to 

achieve this single point of contact an intersection is assumed, otherwise no 

intersection is assumed. 

This algorithm is executed by subroutine INTERS. ·The equa­

tions are described below. In the current version of the program a memory 

knowledge is used, hence the algorithm may fail for large penetrations. This· 
> 

1s provided which uses the last solution as the starting point for a new . 

solution. Use of this prior knowledge should reduce the number of iterations 

which are done to obtain a solution. 

Consider the case illustrated in Figure 7 •. 3 of two ellipsoids 

A and B which just touch at a single point. 

8 

Figure 7.3 ELLIPSOID-ELLIPSOID CONTACT GEOMETR.Y 

' ! 175 
:• 



··- .. ------· ---- -·------------ ---~--

The basic geometrical relationships are then 

v,uAx = -n 
ft f3 (x- in) = n 

where n is the normal directed outward from ellipsoid B and 

v) fl are scalars. 

For an exterior contact V; p are both positive and for an 

interior contact (A is interior to B) V; p, are both negative. Hence in either 

case 

which yields vAx= -f3(x-m) 

(vA -r 13)x= f3m 

{x-m)= -V(J/A t13)-
1Am I • 

Thus the value of the single point of contact X is determined 

by the parameter '\1 • 

., 

Let 

and 

The basic equations of the ellipsoids are 

X· Ax =t 

(X-rn). f3 {x-m}=.l 
(t, (v) = x. /IX 
~ (v)= (x-m)·B(x-m) 

For a particular X 

if ~ (p) > 1 ellipsoid A has been expanded, i.e x lies outs ide of the ellipsoid 

if ~ {t;) < 1 ellipsoid A has been contracted, i.e x is ins ide the ellipsoid 
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Now define the function g( Y) such that 

g(V) = fA (v) -{8 (v) for exterior contact 

and/or 
1 • 

= ~rv)-~(P) , for interior contact g(V) 

The single point of contact is then determined as the value of 

where g(J?) = 0. 

Investigation of the equations shows that solving for the V 

where g(V) = 0 is equivalent to solving a sixth degree· polynomial in Y 

Rather than solve the polynomial a Newton-Raphson procedure is used where 

g(p) is expanded in a Tayler series. 

g/vr-cf'p) =9'fPJr-oP .!!£.I 
. dp p 

Since it is desired that g(Prd'v)=O .then 

-9' {p) 
oP·= r~; 

" "P "P 

This procedure is iterated until a specific degree of conver­

gence is achieved ( I~~ ...::::: t!;. ) or until a specified number of steps have 

been executed and convergence has failed in which case an error message is 

printed. 

The initial value of v is estimated as 

v =(m· L3m I · )~ 
· Im-Am 

for the exterior contact and the negative of this for interior contact. This 

produces a v of about the right order of magnitude. 
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Using the expressions for fA- and fB,the following equations. 

result 

. d7A dx · 
- = z- ·Ax, 
dp dp 

dfa d.(A -=-v -:~ 
dp d.P 

d. x =- r P A r .8] -1 Ax} 
dP .1: . . 

for exterior contact, c!1_ = d f,_ _ d Tg = (t r P) d f,., 
dp aP dP _·. dp 

and. for ~'terior ~ontact·, cLg = _ 1
2 
d~ _ dfa=(P _ !_ )df:. 

dp /'-4 dp dp f: dp . 

1 
The functions fA. fB and T are illustrated below as function~ of"v. 

A 

'V < 0 

INTERIOR CONTACT 

"Y > 0 

EXTERIOR CONTACT 

Figure 7.4 ELLIPSOID FUNCTIONS FOR INTERIOR AND EXTERIOR CONTACTS 
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When the solution is obtained,. the expansion factor is 

ef~ fA 

If no solution is obtained after 50 iterations, the statement 

"INTERS ITERATION DID NOT CONVERGE" is printed and the program 

continues. 

7.2.2 Depth of Penetration for Ellipsoid-Ellipsoid Contacts 

The depth of penetration for the ellipsoid-ellipsoid contact is 

computed by subroutine SEGSEG by the following algorithm, using the results 

of subroutine INTERS. 

1. For an exterior contact where the ellipsoids have been 

contracted by an amo~ntef as determined by subroutine INTERS 

they have···a single point of contact at the point x when contracted. 

The location of the same point on A when not contracted is 

XA =~f 

and on B is 

Xa=(X-m);Yfm 

The vector between these points is then 

X 11-X13 = (, .:!..._ -1)m 
cf 

The depth of penetration, p, is taken as the magnitude of this 

vector i.e. 

jJ = rt -1)1 ml 
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2. For an internal contact,A has been contracted and B 

expanded. Hence, 

X,.q =~f 

X8 .= t1/x-m}-rm 

Then 

.X--9-%.8 -~,c-£l (X~7r;) -m-(~ -cr)x- (L-er) m 

The depth of penetration is then taken as 

P=~11-X811(f;:-~ Xr~ {x-mJ/ 

7.3 RESTRAINT BELT CONTACT 

The CVS IV program provides two options for modeling of belt restraint 

systems: (1) the original method, which ~s described in detail below and (2) 

a new approach developed for the Air Force Aerospace Medical Research Laboratory 

at Wright-Patterson Air Force Base which allows modeling of interactive belts 

that can slip over multiple deformable segments (References 5 and 6). 

In the simpler treatment, each restraint belt_is assumed to lie in 

a plane defined by two anchor points attached to a segment (usually the vehicle) 

and by a fixed point on a contact ellipsoid rigidly attached to some other 

segment (see Figure 7.5). The calculation of the belt length from the fixed 

point to the two anchor points is done separately. The friction of the contact 

between the belt and the segment ellipsoid may be assumed to be either zero or 

i~inite. In the zero friction option the total belt length is used to compute 
' 

the strain and a single force-strain history is used to determine the force 

which is applied equally at each of the tangent points. In the infinite 

friction option each of the partial belt lengths (one from the fixed point to 

anchor point A and the other from the fixed point to anchor point-B) are treated 
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...__ -~ I :"'>TANGENT PTS. 

Figure 7.5 RESTRAINT BELT GEOMETRY 
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independently. Separate force-straint histories are carried for each part 

resulting in different forces. It is assumed that the force-strain functi9ns 

are defined in such a manner as to account for deformation of the contact 

ellipsoid (i.e., they are mutual force-strain functions). 

The center of the ellipsoid is used as a reference for the calculation 

of the tangent points and the belt length. 

The following vectors are defined: 

i-A~J-8 -location of anchor points w. r. t. the ellipsoid 

iA , Ta - vectors from the anchor points to fixed point 

~ - vector defining the belt plane 
All quantities such as these are matrices in the reference system of the segment 

associated with the contact ellipsoid. 

T,.-~®~ 
c -178 ® lA I (7.9) 

The distance, f , of the center of the ellipsoid to the belt plane 

is computed by 

jJ={ 'jc= "J;;·jA=lc· 'JB (7.10) 

An ellipse is formed by the intersection of the belt plane with 

the ellip-soid. The center of the ellipse is given by: 

-1 
E Tc -

X E.·~· E~T;; f3 (7 .11) 

E is the ellipsoid matrix. 
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7.3.1 Calculation of the Tangent Points 

The belt plane is illustrated in Figure 7.6. 

Let ;;=d.X-r-/Jrr-Tt ®fp 

Since x, · z, and p terminate in the belt plane, the following re­

lationships hold, t · p=t· X=t·~ 

Then 
t·fPCXt· X r/Jt·}' 

ct'r-/3=1 

p may now be written; 

JJ= .z r-~ ( r-x) r- Tt® E;-

yields 

(7 .12) 

(7.13) 

Since z-p is tangent to the ellipsoid it must be perpendicular to the normal 

at p.· Applying this yields. 

(;- p) · Ep=_o 
and sin~e p lies in the ellipsoid the ellipsoid equation states that f .£1' =1· 

Therefore 

yielding 
1. cp =t 

1- at.;· Ez r-jJ ;-·fj-

(7.14) 

Equations (7 .12) and (7. 14) may be used to definee>( and (3. To determine 7 

use; t=p·Ef> 

l=cxzx· Ex.rzq_j5X-· fJ r-Zd 7X· E(t~ c;,J 

1-;5 ':t · E 1 r- z ;5 r; · E (t: ® f j) 1- r2.( t-~ c;)· ( t ® Ej) 

.But x ·f (t® Cjf=Ex. t® Ej=O=Z"j·(t®Ej)=j-·L(t@Ep 
.z. lX[.t-X·Ex] · . 

T­
- (t<YJEj-)· £ (tt!PE,;.) 
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.The choice of the sign of 7 distinguishes between the possible 

tangent vectors from the anchor points to the ellipse. The possible belt plane 

configurations are illustrated in Figure 7. 7. Note that if the fixed point does 

not lie on the arc of contact the belts are assumed to be attached directly to 

the fixed point as in (d) of Figure 7. 7. 

Determination of the arc length begins with the definition of a 

right handed coordinate system uc, up, Tc as; uc is the unit vector in the direc­

tion of the fixed point c from the center .of the ellipse, Tc is the vedor defining 

the belt plane and 1./jJ= Tc@t.tc 

Let f=X(uc)ry(up)fX£ , be a vector from the center of 

the ellipsoid to a point on the 'ellipse. Applying the equation of an ellipsoid 

yields: 

f·£ .f = z:z.uc .f (uc) r- zxyuc · E (&fJ) r!fz.lLp·flLp 
-1-XE. fx..e =1 

then writing 

where 
~X..2. r .zbx Y f-C !f2 = 1 

lLC·EZLc 
Cl.= 

Y-X£·E.X£ 

c _ YfJ· £ ( u;J 
1-X,c.EX£ 

0 
= u c· E (up) 
/-X ·£x 

:1: £ 

(7.16) 

(7.17) 

The values of x and yare computed for the two tangent points. · Denote them 

.. as ,X/1 , y 11 then XIJ J y t!J and 

eA=tctl2 -.t(VA /x. ) ) e=tan -r¥CJ/x ) 
. . A ~ 8 

(7 .18) 
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The arc length is then computed by Simpson's Rule integration 

using (a, b, c, step size and e,) as input. The Function Routine Elong per­

forms this operation. The form of the integration is found by considering the 

following equations: 

Let· 

Then 

Write the equation of an ellipse: 

ax :z.-r .zozy r- c yz= :1 

X= r cose., y= r.st:ns 

r. = 1/ ~d cos~& r zb'~irzB cose f- c sin 2 e I 

The arc length ds is; 

. j . . . r dr 2 

ds= d.r 2r-(rd8) 2 = de ~r :z.{(}) 
Substituting for r yields j · · 1 · · ldr 
. r.zt-('~12.= 

.· . . . de/ 
r 2Ja f; t-r 2 ( hr-ic) 

1 

The equation for the arc' length L is then given by: 

L=t'da Jr" r ("~)~ 
The sign of L will be defined to agree with the sign of . B1 

(7.19) 

(7. 20) 

-:, 

(7. 21) 

(7.22) 

The following assumptions and/or restrictions apply to the 

derivation and use of the belt routine: 

(1) . Anchor points A and B are distinct, therefore A, Band 

the fixed point on the ellipsoid are sufficient to define a plane. 

{2) The fixed point lies on the arc of contact from tangent 

point A to tangent point B. I£ the fixed point does W2,! lie on the 
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7.4 

on the contact arc, the belts are run to the fixed point and the 

arc lengths are set.to zero. 

AIR BAG CONTACT 

The airbag model is based on the a~sumption of a stretchless 

bag of ellipsoidal shape which interacts with contact ellipsoids attached to 

selected segments of the crash victim or the vehicle*. Each interaction of 

a contact ellipsoid and the bag is treated separately by the geometry routine 

which computes the decrease in volume of the bag, the effective area of the 

contact and the force and torque per unit pressure. After all the contacts 

have been considered the total decrease in volume is used to compute the 

pressure of the gas in the bag and then the forces and torques are applied to 

the various segments. 

In using the airbag at least one contact ellipsoid rr.ust be attached 

to the vehicle. This is called the primary reactional panel. A point is speci­

fied on this panel as the deployment point. At the beginning of the program 

(time = 0) the bag is assumed to have zero volume (zero size) and is located 

at the deployment point of the primary reaction panel, after a specified time 

delay the. bag is inflated by using the gas dynamic relations for the choked 

flow of gas through a nozzle. The gas source is a high pressure tank of con­

stant volume, that the total gas which has come through the nozzle, would 

occupy at atmospheric pressure. Until this computed volume plus the volume 

of the intersections from the contacts reaches the geometric volume of the bag 

* The contact ellipsoids attached to the vehicle which are used by the airbag 
routines are distinct from the other contact ellipsoids in the program and 
are referred to as reaction panels in the program comments. The loca­
tion and orientation of these panels is arbitrary. 
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(when fully inflated) the bag is assumed to be at. atmospheric pressure and 

hence no forces are produced. When this volume reaches the geometric volume, 

the bag is said to be fully inflated and the addition of more gas from the 

cylinder or an'increase in the volume of intersection will cause the pressure 

in the bag to increase and thus produce contact forces on any segment inter­

secting the bag. 

OuTing inflation the size of the bag is determined by scaling 

the semi-axes of the ellipsoid by the cube root of the volume. The center of 

the bag lies on a vector which has one end at the deployment point and is para­

llel to the X axis of the primary reaction panel but in the minus X-direction, 

and the distance is equal to the·semi major X axis of the sealed bag from the 

deployment point. 

When the bag is fully inflated it is moved dynamically. A mass 

and inertia matrix is assigned to the bag. Until fully inflated the orientation 

of the bag with respect to the vehicle is held constant and equal to its initial 

orientation. The dynamic motion of the bag is updated by the program integrator. 

An artificial spring force is applied at the end of the positive X axis of the 

bag and is exterior to the primary reaction panel.· This was done to hold the 

bag to the panel. 

7.4.1 Geometry of the Airbag During Inflation 

The airbag geometry during the inflation process is illustrated 

in Figure 7.8. 
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PRIMARY REACTION PANEL 

"""'j DEPLOYMENT POINT 

ll X AXIS OF PANEL 

}b 

l 

VEHICLE REFERENCE POINT 

Figure 7.8 AIR!3AG GEO~ET~Y DURING INFLATION 

During inflation .the following algorithm is _used to compute 

the center of the a irbag. 

Let } 

Jd 

U..y.. 

a. 

Jb 

location of the ·center of the primary reaction panel with respect 
to the vehicle reference 

be the location of the deployment point with respect to the center 
of the panel · 

be a unit vector in the positive X direction of the panel 

be the scaled semi-axis (X axis of the airbag) 

be the location of the center of the a irbag with respect to the 
vehicle origin. 
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Then 1-b = jr J-tt-t:llLx 

The vela city of the c. g. of the bag is computed as the time 

derivation of this expression plus the velocity of the vehicle. 

It should be noted that in the present coding of the program it 
' -

is tacitly assumed that the X axis of the bag is parallel to the X axis of the 

primary reaction panel because. the above algorithm does not consider the 

orientation of the bag. This assumption affects o~ly the computation of the 

artificial spring force which is used to hold the bag to the panel. The spring 

forces applied only if the end of the X axis of the bag is exterior to the panel 

and is proportional to the distance of this point from the deployment point. 

Hence, if the bag X axis is not parallel to the X axis of the primary panel the 

only error would be in the computation of a possible spring force when the bag 

is moved dynamically. 

The scaled semi axes of the bag ar~ computed by the following 

algorithm.·· Let al' b
1
, c

1 
be the semi axes of the fully inflated bag as speci-. . . . . . 

fied by input. 

Then the geometric volume of the bag is 

V = ( 4 I 3) 7T a 1 b1 
c1 g . 

Let Vb be the instantaneous volume of the bag computed from the gas dynamic 

relations. 

Then 

(
v )q3 

a = a b 
1 v-

. g 

b = bl(~f 

,· 
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c = cl (~) 
are the semi axes during inflation. 

The components of inertia of the bag per unit mass are com­

puted from the relations 

AI 2 2 
~~"xx = (bl + cl ) /5 

f/Jyy = (al2 + ~12) /5 

'A.. -( 2 2 
>"zz - al + bl ) I 5 

'· 

which are the principle components of inerHa for a thin ellipsoid (ellips~idal 

shell). 

.. 
7.4.2 Dynamic Motion of the Air Bag 

When the bag is fully inflated the .. sum of the forces and torques . 
acting on the bag are used to determine the airbag position, orientation and 

velocities by integration of the equations of motion. The bag position and 

velocity is updated only at the completion of a successful main program 

integration step and is held constant during the integration step. 
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7.4.3 Air Bag Contact Geometry 

A 

Figure 7.9. AIR BAG GEOMETRY. 

Subroutine EDEPTH computes the points of maximum penetration(i. e. jPA- Paj 
is maximized) 

?=/~-Pe/2. (7.23J 

If P is less than 10-6 no further computations are done~ zero penetration is 

assumed. 

If p is greater than ~r equal to 10- 6 ' two orthogonal planes are ·defined con­

taining the line from PB toP A' using subroutine OR THO. 
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In each plane the ellipsoids are replaced by circles with the same radii of 

curvature as the ellipsoids. 

Two cases are considered: 

Case I: The radius of curvature of the airbag ·r A is greater than the 

radius of curvature of the contacting ellipsoid r/3 • Two 

circles are constructed with a radius :r=fr A-r 8 )/z and 
· r r r 

center located a distance .r = /1 8 from the centers of the c ;z_ 
circles A and B. These circles are located such that they are 

tangent to the circles rA and r!J as shown in Figure 7 .10. 

The airbag is deformed to the shape described by the arc 

1-2-3-4-5-6-7. This arc is the same length as the arc along 

the circle A from 1-PA-7. This may be established by con­

sidering the angle ¢ in the figure. We have 

An:. E-7 :~ rA ¢ -(rA-r tJ} 2¢ + rB ¢ 
. /fl. --

2. p.Z4) 

The line from 2 to 6 is tangent to the circles. Points 2 and 6 

are the same distance from the center line as are the centers 

of the tangent circles. 

This distance ex. is 

2 2f- )2. a== rc-trc-E 
2 

(7.25) 

The volume of revolution of a sector of a circle as shown in 

the figure below. is · 

Ys = 7rf ~-cos ¢(/-cos 2~) J 
(7 .26) 

./ 
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Figure 7.10,CASE I AIR BAG CONTACT GEOMETRY 
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And the volume of a ring as below is 

Yl? = Z 7TCX r z·~- Sin¢ cos¢ J 

Hence the volume of the shaded area in the figure above is 

where 

V= 7f r/ f/3- cos¢ (.r-cos 2
¢ j3 J] 

... r7TriJ3 
[ zj.3-. cos¢ (t- cos

2 ¢/3)] 

-2. 7rrc r2.sin¢ ~-sizz¢ cos~ 

cos¢= 1-P/(r.llrT.E) 
a: = rc st'n ¢ 

V= 71 frr: rr;) /_ ? )
2 0-J/3 ~) z< (rAf-rB (~ rA'rrg 

-c:(r
2 [?T- zsizi+L- __t:_)-z ~ fz_ i%rr ~} . I" r/l,..rB r ~~ /'A 8 

c 
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Case II: The radius of curvature t;.g is smaller than r B 

/ 

A 
(J 

Figure 7.11 CASE II AIR BAG CONTACT GEOMETRY 

· In this case no tangent circle is constructed since the arc 

length along ~he bag is greater than the arc of the contacting 

surface~ 

Alpha, ·<X is' computed as the distance to the point of intersec-: 

· tion as follows: 

~=(r.-92-r; r-(r/lr-r~ -j') 2)/2(r/lrrB-/) .· 
c(= r z_ /12 .. 

A r · · 
(7. 30) 
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The volume is 

Y = ;,r; [z/3- cos ¢h' (l-cos.2¢17/.3)J . 

.;. 7T r: ~p - cos¢ 
8 

{1- cos 2 a5 8 1] (7.31) 

Since 

Cos ¢11 =jJ/r/1 

and cos ¢8 = ·1-(Pf/J ~rll) /ra 

(7,32) 

It is now possible to write 

. V = 17'r~ {t~~/r,q)2(1-(1-~/rll)j3). 
. . . 

.f 7rr; (1-(Pf;5-r;;)/r8 )'!l/J-(1- (pf~-:r/1/rg)/3) (7.33) 

After the above computations are made in each plane the volume of intersection 

is computed as the average of the volumes of revolution obtained in each plane 

and the area is estimated as 7f times the product of the ot~ (the area of our 

ellipse). 

(Note: If the penetration is greater than the radius of curvature of the air­

bag in any plane the computations are done by replacing the radius of curva­

ture r11 with the penetration Pg • This serves to limit the volume in cases 

of extreme penetration where the algorithm is· probably no. longer valid). 

The forces on the bag and on the contacting surface are assumed 

to be applied at the point ~ • A f~iction force is computed. which apposes 

the tangential relative velocity of the two surfaces at this point using a friction 

coefficient supplied by the user. A ramp function is used to limit the frictional 

force for small relative velocities. 

...._......, ....... -
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7.4.4 Depth of Penetrc>.tion for Air Bag Routines 

(Subroutine EDEPTH) 

The airbag routines which consider the intersection of ellip­

soid contact surfaces with an ellipsoidal airbag require the points of maxi-
. -

mum penetration. Intersection is determined by subroutine INTERS as de-

sired in Section 7. 2. 2. If an intersection is detected then subroutine EDEPTH 

is used to compute the points of maximum penetration. The-geometry of the 

ellipsoid-airbag contact is illustrated in Figure 7.12. 

Figure 7.12 ELLIPSOID-ELLIPSOID PENETRATION 

Consider ellipsoids A and B whose centers are separated by 

the vector m. It is desired to find the point X on A and 1j on B. s~ch that 

the distance /y-X[ is a maximum and represents the maximum penetra-
' 

tion in the region of intersection of the ellipsoids.· 
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At the point of maximum penetration, the vector y-x will be 

;>.l;gned with the normals at the ellipsoids. -Thafis 

/LAx= y-x=-JJL3(!J-m) 
(7.34) 

where X·AX""1.J (z;-~·f3{y-m)=.1 and 1-' and ~ are negative sc~lars. 
Eliminating x we get 

(;t-v A/3 +A. A+ vf3) (y-m )•.;tAm 
_(7.35)-

Thus 

y-m=-{-ivAB:r/LA fvf3) ~Am 
(7.36) 

If y - m is known x is given by 

X= y; J/13 (y-m) 
(7-.37) 

The scalars I\.. and J/ must be chosen such that 

X·AX=l = (y-m)· 13(!J-Tn) (7.38) 

The procedure used is an iterative Newton Raphson scheme. Starting values 

of 1\. and V are estimated. From these y - m and x may be evaluated. 

The ellipsoid equations are considered as functions of ;t and 71 • That is 

and 
/ (Jt,P)=x·AX-1 
g (/L,Jl )=(y-m)-fJ(y-m) -.1 

(7·.39) 

Determining .ll_, JJ such that f (A-,J/)=.ff(JL, ,})=o. 

Using a Taylor series expansion yields \' 

\' \ 
' •. 
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. df rJf 
1//i-rtfiL_, JJ-rcfP)= f(Ji_,Jl)+ d!L d'/lr-clPdP 

. cl cJ, 
g{A-r-d';L_,J),t.cJJ))= y(/L,J)),i di cf/t,t d~ d'p 

(7.40) 

Thus tf iL and J';J may be estimated from the equations 

df' qf 
d;L oA.J· a'J) oP = -rfA,P) 

rly clg 
d v cfA.. r dp cfJ) = - g {A,, J)) 

(7.41) 

Replace /L by /l. t-o ;t, and -rJ by YfoP and repeat the procedure until 

~~~; ~~~ are less than some test. 

To evaluate the partials it is necessary to have 

d~, dX • ~ . CJY 
~}., dV J)..' JV 

Differentiating with respect to 7L,
1

J,:J yields: 

0 
Y =- (vA.AB + iLA + r f3 )-1 Ax aA.. . 

(} x = OlJ -r J/!3 oy 
oit oiL iJlL 
0 

x ={P;t sA +JLA +rBF1 /3 (IJ- m) or 
!.f. = QX +- A.A Jx 
tJr c}p i!JJ 
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and for f and g, 

flf = 2X .A ox 
J /L o.iL 
Jf = 2X· A Jx - -

iJJ) !Jy 

~- = 2 (y-m}.8 dy 
dil oA. 
1.i_ = 2(!J-m) L3 t?t; 
rJp or· 

This completes the evaluation of the necessary derivatives. 
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7 .4.5 Gas Dynamics of the Inflatable Restraint System (Air bag) 

The gas dynamics model for the a irbag is considered in separate 

parts. One part consists of the gas supply model and the other part consists 

of the gas dynamics of the infla~ing or deflating bag.' 

Gas Supply Model 

r 

•.'· 

The basic a_ssumptions are: 

(1) Perfect gas 

(Z) . One-dimensional, quasi-steady, isentropic ·flow 

(3) The flow through the nozzle is choked for the time duration 

of interest 

(4) The mean velocity of the gas in the supply is small 

·The mass flow per unit area in a choked nozzle is given by* 

4) = [ ~ t P f (a~,)~~; ] rjz 

(7. 44) 

where w is the flow in (lbs/sec in
2

) · 

g is the acceleration of gravity (in/ sec
2

) 

p is the pressure (lb/in2 ) 

f is the density (lb/in
3

) 

7f is the ratio of specific heats ( ,;....1. 4) 

The change in density of the constant volume supply cylinder is 

•· I 

: 

LP 
,t-c 

= c.vc.oA 

Yo 
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where 

Vo 

A 

is the volume of the supply (in3) 

is the area of the throat (in2) 

co is the discharge coefficient of the nozzle (throat) 

For adiabatic flow the following relation is valid 

1' 
P = P() (f I;.) 

where ~ and Po are a reference pressure and density. 

The ideal gas law is 

where T 

.R 

M 

P = _IJR.T = "»?IGT/V0 

is the temperature CRankine) 

is the gas constant (in per 0 Rankine) 

is the mass (lb) 

(7. 46) 

(7 ~ 4 7) 

Combining equations (7.44) thru (7.47) and integrating yields, 

f =.rojQ 2/d-1 

where 

Po = is theinitial density 

Q = 1 + c (t-t0 ) J O"+t 

c = Co A ( y-1 ) Otj-. Po(~) d-1 
V0 2 J'o if+ 1 

t = is the time (sec) 

(7. 48) 

(7. 49) 

(7. 50) 

and where the subscript o refers to the initial values of the respective 

variables. 

We also have 

P = P
0 

I Q :.. ?j(f-1 

T = To I Q2 (7. 51) 
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Initially, the mass of air in the cylinder (m ) is 
0 

Mo = Vo/o 

hence the mass of air discharged into the bag Mm is given by 

Mm =- M
0

. - V
0

/ 

= Vo ~ ( 1- /j /! ) (7.52) 

· Gas Dynamics of the A irbag 

. ~ , During inflation, the volume of the bag,, Vb, is estimated by 

Vi- = Vma.¢ (t- Pjp;,) (7.53) 

where 

v = "Po 
7771Lf£ ~ 

l'o.. = atmospheric pressure (7. 54) 

When the calculated value of Vb is equal·to the geometric volume 

of the fully inflated bag the gauge pressure in the bag, f'-J., is computed by · 

where J'q_ 

pi- =- Pa. ( /i· j.f'o.) o- P a_ 

(7. 55) 

is the density of the gas in the bag when it was first fully 

inflated (i.e. when its calculated volume equalled the geometric volume at 

atmospheric pressure) 

.?& = M-ljv-1-

~ = mass of air in bag 

vb = volume of bag 

The volume V b of the bag is 
I 

the geometric volume minus the 

decrease in volume due to the contacting su\aces. · The mass of gas in the 

·\. 
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bag is the mass of the gas discharged into the bag less the mass -of gas ex­

hausted through the bag exhaust orifices 

M-1- = Mt:77 - .M out-

where M 1., is given by equation (7. 52) and M'our is the mass of gas exhausted. 

The quantity of gas exhausted is estimated from the relation 

· d 11ov"l! = 0 
Lc 

if pb is less than a specified vent. pressure 

L1'1ovt" 
de 

= (CO A1~:l.Pa_ I' P-I- /i-s) if pb exceeds vent pressure 
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7.5 FORCE DEFLECTION MODEL 

In this· model surface contact forces are replaced by a single 

force which is applied _at a· specific point and in a specific direction as deter­

mined by the various contact routines. The magnitude of the normal force 

is computed as a function of a single parameter which for the ellipsoid-plane 

and ellipsoid-ellipsoid contact routines is a measu_re of the maximum pene­

tration. In addition a friction force is computed which is proportioned to the 

normal force and is in such a direction as to oppose the tangential velocity. 

The model does not allow for the addition of viscous or inertial forces except 

as provided by the 11 inertial 11 spike described in the following or the impulse 

described in section 7. 7. 

In the force deflection calculation, hysteresis effects are 

approximated by specification of an energy absorption factor R which may be 

a function of the force deflection parameter d' Permanent offset may be 

specified as a deflection factor G which may be a function of the parameter 

t:f. A unique force deflection characteristic is assigned to each contract 

hence one should specify the force deflection characteristic as representative 

of the mutual properties of the contact involved. In specifying a mutual force· 

deflection it is important to remember that the parameter d' as computed in 

the program is a geometric property of the contact surfaces which is computed 

as if the surfaces were not deformed during the impact. 

Five functions are associated with each contact.· These are: 

1. Base Force Deflection 

2. Inertial spike 

3. Energy Absorption factor (R) 

4. Deflection factor (G) 

5. Friction Coefficient 
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In the current model these functions are assumed to be functions 

of the penetration factor (force deflection parameter.) No provision is 

made for variation with velo.city. 

Each of these functions may be subdivided, if desired, into 

two separate parts ~ { o) and f2.(d') where, \ 

Ji (tf) is defined for 0 ~ tfo .=. /:=.f~ 

and 

f2. (J) is defined for d:t. ~ J' ~ ~~ 

If J is greater than the last defined value the function is 

assumed to be a constant equal to the last defined value. Each of these 

functions may be any of three functional forms; a constant, tabular data, 

or a fifth degree polynomial in ~. 

The force deflection is constructed in the following manner 

using the first four functions 

BASE+ INERTIAL SPIKE (IF iT EXISTS) 

BASE 

FORCE. 

I 
1UNLOAD 

I 

GauAo SREF. 

Figure 7.13 FORCE DEFLECTION CURVE 
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Initial loading occurs along the base curve plus the inertial 

spike(neednot be used.) As long as continuous loading occurs the charac­

teristic obtained will be the base plus the inertial spike. Unloading will 

proceed down an unloading curve. If unloading occurs after a specified 

deflection is achieved, the inertial spike is deleted from further calculations 

of the force. 

Since the program uses a variable step integrator which may 

reject a particular step and repeat the calculations for a smaller step size 

if is _not possible to detect whether loading or unloading is occuring by com-

. paring the present J' with the previous tf •. To circumvent this problem, a 
complete force deflection characteristic is defined at.the beginning of each 

new integrating step and is retained until a successful integration step has 

been achieved. 

The subroutine then redefines a new force- deflection function 

depending on current value of d' as follows: 

1. d~ 0, or if"o = o;,m. return to calling program •. · 

2. If ~~j Cl/Bic , unloading is occurring, define reloading cubic: 

(a) If. inertial spike ·exists and if J;;.H> ZJIMIIt'JC 

remove inertiaL spike from further consideration 

(b) Set 
o;VB/C: m,z.z_( d;- j{iVAP) 

· dc0 = J;;u6tc 

.L} : . ~~I"" - ;;l/BIC 
(7. 56) 

(c) Define new cubic ~ (J)= ~-rr;(d-rfcv4,0)-r"~(t!-fcvtuc) 2r ~(!~J;vstcJ 
for J;vBtc = d "'"~.EF. t~t satisfi~s the following conditions: · - · 

{ ( ~61') = ~A$£( ~.EF ) { ( Jt:V8/C) = ~ ( dCli81C) 
~ '(tf.-?~;) "' .r;J/1$.E (d;.E,r) f"c' ( dcv81C) : r ~ ( a::V81C) 

(7. 57) 
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by 
CO= ;a ( c!;.U8/C) 
C1 •fa ( dCU81C) 

and Cz and C .3 by solving simultaneously 

Cz Ll 
2 

r C
3 

Ll 3 = F'.e,u (J',4,)-C0 - C:t Ll 

z C2 L1 -r 3 C3 !l ~== r ,;11u ( tf,.EF)- Ct. 
(7.58) 

(d) If local minimum of new cubic definition lies between ic1181c· · 

and . J' R£F and is negative, then replace cubic definition 

a straight line between the points [ · dcu81c ' Fa ( tY cv81c } ·] 

and [ ~v, ~Au ( d,u,) ] by 

CO : ~ ~U81C) 
C:t.=-f- j!e"u{~.eF}-4 (tfcv4tcJ] 
C2 ... C_, =- 0 

(7. 59) 

and return to calling program •. 

3. If ~"81c~d .£~H , reloading is occurring; define new quadratic un­

loading curve from cubic curve 

let Y2.,.. { (tfc0 } 

and 

~ CU.S IC . ,:f tfCU.6 /C 

11,£,. =f., (.I}d J r j{ (J) dJ'- j fc (i )d J (7. 60) 
.;'iiQvAP &co Oc0 

number 5. and go to step 

(Note: 4: 
0 

was the value of ti'cuetc when ~ (tf} was defined.). 
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4. Otherwise, 0,.£ ... ~·J' ; define new quadratic unloading curve from base 

curve. 

(a) . If t5 i! tJ , remove inertial spike from further consideration.· 
IN£/f 

(b) Determine R factor and place into R ""''r 

(~) 

If R = 1, use base curve for unloading by setting 

~(lAP: 4u8/C =tfH£F "'~o" f/z.: f12." 0 

and return to calling program. 

Determine G factor and place into G ~.,15r 

Fetch 1J0 from input data for base function and 

da_v,.p = 4 r GLAsr ( J'-4 J 
Y.z. :: ~RS£ (J') 

!Jz. = .!/ { r;'n~rtt·~t (d'} 

if the inertial spike exists. 

J' 

. ' 
Ill?£//= J ~As£ (j )ctJ 

0 

compute 

(7. 61) 

(7. 62) 

5. Using values of !/2.. ·and AREA defined: in either step 3 or 4 determine 

new quadratic unloading function 

~(o}= fj0 r (/z. (d'-d'~v,~~p)>' f/2 (J'- tf~uA6)2 

I 
I 

(7. 63) 

for !~vAP ~ o £ J'cvtJIC that satisfies/the following conditions where 

dC(/8/C = d 
~ {tfQuAP)"o 

. ~ ( J;U81C J-•."!Jz. (7. 64) 
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and 
. dcv4tc · f. (tf)dd' =- ~Asr fll/?EA 

J'GIIIAJJ ·• '·. 
by setting 

f/.o=O 
·.:z. . 

CJz = rfcvtJIC- dG,liAP [ 
3 li'.t.~rsr""11.f£A J ::---==.:....::--- - !/ 2 

dc(J.,/C -dQvAP 

(7. 65) 

If Cf.,'..::: o; <J., is set to 0 to guarantee non-negative derivative at o = OauAP 

and 

If C/.2.~0 ~2.= 

at cf' = OcvtJtc 

7.6 

1 

[ 
!l:z- f) 

4vetc -J'GVAD J (7. 66) 
~= J: 

. 2. OCV4/C - ~{IAf) 

Jt3 to guarantee non-negative derivative 

JCV.!IIC- dQIIA.O 

IMPULSE FORCES 

For the first contact it is necessary to account for the 

sudden momentum change caused by impulsive type forces. For perfectly 

elastic ·impact an energy approach would be sufficient.· For impacts ~hich 

are not perfectly elastic a coefficient of restitution is generally used to· 

define the force magnitude. In the literature most of the cases for which a 

coefficient of restitution is defined are for simple one or two dimensional· 

probl~ms. A more general treatment is given in Reference 16, but general 

three dimensional results are sparse for the type of materials of interest in 

the occupant crash environment. For this reason, the impulse capability 

has been incorporated in the program in the. following manner. 

The program has the capability of making a step change in 

the linear velocity, X., and the angular velocity, w , as a result of an im­

pulsive force. 
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· The model computes accelerations from forces, and from a 

computational point of view must distinguish between two types of impulses. 

The first type is one in which the direction of the impulsive force is speci­

fied and its magnitude is unknown, such as the force at the first instant of 

contact of a body segment with a vehicle surface or with another body seg-

. ment. 

The second type is one in which neither the direction nor the 

magnitude of the force is known, but a desired change·in velocity is specified, 

such as the case where a joint is changed from an unlocked to a locked state. 

At the instant of locking, an impulsive torque must be applied which is suffi­

cient to reduce the relative angular velocity of the segments adjoining the 

joint to zero. 

For purposes of this discussion, the system equations may be 

represented in the form 

j 

.. _, 
.X= s t.<. 

(7. 67) 

where (.(is the generalized applied forces and torques 

S is the system matrix .. 
X is the resultant acceleration (linear and angular.) 

Integrating from time t to t + ~ yields 

t-t.; 
X (t te)-x(tJ= js·'udl{ 

. . t. 

Taking the limit as F goes to zero yields 

. • . -1 

LlX=5Jt.\. 

Where .t!X is the impulsive .change in velocity and 

eft.( is the impulse (impulsive force.). 
J 
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\ 

\ \ 
\ \ 

\ 
' 

In the program the matrix S is not explicitly evaluated. It 

is implicit since the program computes forces and then solves a setof 

simultaneous equations using a sequence of matrix block type operation to 

obtain the acceleration. 

. . 
Impulses will only be applied at the completion of a successful 

integration step before proceeding to the next step. Also, the integrator is 

reset and the step size is reduced to its starting value .. 

Consider the two types: 

TYPE I. 

The direction of the impulse is known, its magnitude is not 

known. If more than one impulse occurs simultaneously it will 

be assumed that they are decoupled so that they can be handled 

sequentially· by the technique developed for one. In. this case 

the program steps are as follows: · 

1. Detect and identify the impulse to be considered. 

2. Call the appro~riat~ contact routine to apply an impulsive 

force of the proper direction as under a normal·call. This 

is the only force appl.ied (all other forces and gravity are 

set to zero.) 

3. Solve the system equations. 

4. Interpreting the computed acceleration as step changes 

in velocity per unit. of force,. determine the magnitude of 

the force using the coefficient of restitution. The normal 

component of relative velocity after the impulse at the 

point of contact will be the negative of the coefficient of 

restitution times the normal component of the relative 

velocity befo.re the impulse,-
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5. Scale the .:1 X to the value determined in step 4 and add 

them to the X in the program. 

6. Repeat steps 2-5 for all impulses to be considered at 

this time. 

7. Make normal call to DAUX and reset integrator. 

8. Proceed with normal program. 

It should be noted that the impulsive force is applied in a di­

rection that has a component normal to the surface and a component tangent to the 

surface. The tangential component is determined from the prescribed coefficient 

of friction and is opposed to the direction of the relative tangential velocity. 

Application of .this type of impulse may or may not cause the direction of the 

tangential velocity to reverse. The exact treatment of an impulsive contact 

in three dimensions considering both linear and angular momentum is quite com­

plex and has not been solved (Reference 16.) It should be noted that a reversal 

of relative tangential velocity is not unusual as the tennis or billiard player 

is well aware. 

The coefficient of restitution,as interpreted by the program is 

the ratio of the negative of the resultant normal relative velocity after the 

impulse .to the normal relative velocity before the impulse. Thus a coefficient 

of restitution of one (1) will reverse the normal component of the relative velo­

city while a value of zero (0) will result in a zero relative velocity after im­

pact, and a coefficient of restitution equal minus one (-1) will produce no change 

in the relative velocity. No restriction is placed on the value of the coefficient 

of restitution by the program (i.e. a value of +2 or -8 will be accepted.) In 

normal usage, it is assumed that the value will be between + 1. 
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TYPE II 

A resultant velocity change is specified, the impulse is un­

known. For example, consider the case where an unlocked joint is locked, say 

the joint connecting segments i and j. Determine the impulse torque vector, 

t, applied at the joint which will determine AWj and 4:1 We. such that the 

resulting velocities are equal i.e., 

W: f LJ w: = w. -rlnu. · 
J.. {. J J 

The system equation is . ,... ,... 
· LJX= 5t = .::>Ju 

where 

t=~~) 
and S is a 6*(nUmber of segments)by 3 matrix then 

"It" flWj' ~~- t1 ~ 

Ll w-· ==s:YJq J :; 

(7.70) 

(7. 71) 

(7. 72) 

'· 

-1 -1 Where S. are the three rows of S that correspond to the .L1 X 
~ 

representing 4 uz· 
41X representing A w.i 

Thus 

and s-:1 
J 

-1 are the three rows of S that correspond to the 

cfq~t 
(7.73) 

U{ f 5;cf ~ = UJ.i f Sj'i l< 
(7. 74) 

Solving for Jc.c., 

( _, -j)-1 / ) 
J~= 5z- sj r ~-~ . 

(7. 75) 
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I · d h s-1 -l h · If · · · 1 t 1s assume t at . -S. as an 1nverse. 1t 1s s1ngu ar, 
1 J 

the problem cannot be solved. 

The remaining a)c may now be ·evaluated from equation (7.71). 

The matrix S may be determined by repeated calls to the routine which solves the 

system equations, each call produces a solution vector which is a column of s-1 . 

In the first call, put a unit x component of torque on segment i and a negative 

unit x component of torque on segment j. The second call uses a y component and 

the third a z component. 

In general, in order to consider the simultaneous application of 

impulses to one or more joints,~ is a vector of length 3*k, where k is the num­

ber of joints to be considered as impulsive. S has dimension 6* NSEG by 3*k and 

must be determined. There are k sets of equation (7.74). Equation (7.75) rep­

resents the solution of a 3*k by 3*k system of equations. 

This development may be modified for the case where its joint is 

not completely locked in this case equation (7.70). is-replaced with the equation 

p (wt+-6wL) = p ( W· +Ia W·) J . ,J 

where p is the appropriate projection operator: 

if the joint is fully locked p = I, the identity 

if the joint is locked on axis h p = hh· 

if the joint is free on axis h p = I-hh· 

Equations (7.71) through (7.75) are modified accordingly. 
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APPENDIX ·A 

THE RIGID-BODY EQUATIONS OF MOTION 

A-1 Basic Equations of General Rigid Body Motions· 

The.dynamics of a system of rigid bodies depends upon the forces of 

interaction of the bodies and upon the single-body equations of motion. These 

basic rigid-body eqtiations are summarized and derived in this section. 

' From Chasles' theorem·~Reference 11, page 124), the general motion of 

. a rigid body can be expressed as a translation plus a rotation. It follows that 
~ . ~ 

the complete differen~ial equations of motion of the body are composed of a 

·. translational equation and a rotational equation~ The most general forms of 

these equation,s are obtained when the rotational equations are expressed in. 
• . . I . . . 

terms of the rigid-body rotational inertia tensor about an arbitrary point of the 

body space~ These most general forms are not necessary since the tensor of 

rotational inertia about an arbitrary point is simply related to the tensor of 

rotational inertia about the center of mass (c. m. ) of the body. Accordingly, this 

discussion is limited to the simplest forms of the equations of motion. These 

equations are 

where 

' --

~ ~ 
m.x = F 

~ ~ 
H = N 

(A.l) 

(A. 2) 

~ 
X ':'/ the cent"er of mass (c. m. ) of the body 

j 

I 
m= 
~ 
H = 
~ 
F = 
"it: 

the total mass of the body 
. . . 

the angular momentum (moment of linear.momentum) of 

the body about· its c. m. 

the sum of allexternal forces applied to_ the body 

the sum of the moments about the body c. m. of all fo:r:ces 

applied to the body plus the sum of all force couple_~ 

(torques) applied to the body. 
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.. 

The angular momentum about the c. m. is given by 

where 

tP = 
~ w = 

---:;> 
. H·· = 4;. 7:t (A.3) . 

' 

':· .... ••. 'l 

the tensor 'of rotational inertia of the body about its c. m. 

the angular velocity of ~he body about i~s c. m. 

Since the tensor of inertia is symmetric, it i~· diagonal when expressed 

in a special coordinate· system, the ·p~incipal"-a~i·s syst~m of the ·body::· In. this 

system, the diagonal element<Pu. of <.P is equal to the in.o~~~t of in~r'tia:·of the 

body about its · i th principal axis· Thus, the component, Hi , ~f If' . in ·the 

direction of the ith principal axis is give~ by 
'· 

Hi. = .4>, wi · 
• 7• " ... .• 

where 

~i ~ <P.;.~· 
. ~ 

and w,denotes the component of w in the direction of the (. th principal axis. 

The component, em l, of~ in the direction of principal axis 1 of the body i_·~ 

~-, . ... ,. 
.•· 

i ~ ~- , f: .' ,, .. 

given by 

~ w 
( H )1 = Il 1 . w 2 w3 (I2 - I3) (A.4) ·· 

~ ~ 
(H)2 and (H)3 can be obtained by cyclic permutations 1 + 2, 2 + 3, 3 ,. 1 of the 

subscripts in (A4) '· 

The equations of motion in(A.l) and(A.2}are derived in the next subsection. 
·:· 
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Derivation 

R1~1cl. 'Soc!y 

() 

·~ ... ' ·' 

Figure A.l VECTORS DEFINING A POINT IN A RIGID BODY 
·\: 

··Figure A-1.~ depicts the ·geometry of the position vect~rs ~mployed in the 

developments. The poi~t··o is the origin of the space-fi~ed.(in~rtial) refer-
. ' 

ence·frame. Point Cis a fixed point in the body which, .for the present,· is 

arbitrary but which is later identified with the body c. m .. Point p is any other 

fixed points in the body. The position vector 1, which is directed from the point 

C to the point p, is rigidly fixe~ in the body. 

From Newton's second law of motion, the equation of motion for the 

point p may be express.ed 

f(i{~ =j "M.11)dv1 + Fcil (A.S) 

~ ' ·, ,· ·.. . ' 

Inf;.. .s),R denotes the position vector of the point p relative to the origin of the 

space -fixed coordinate system. and 1 is a~ defined above· .. si~ce t uniquely 
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defines the point p (when the point C has been defined), functions which depend 

on the position of p may be expressed as functions of 1. * 
~ ~ '. ·-·- . 

The function F(r) is the volume density at the point p of external forces 
~ 

applied to the body. F(r) may include discrete forces by the employment of the 

formalism of Dirac delta functions. 
. ~ ... ~1 1 

The functlon _I(r, r )dV denotes the volume 

density of the force exerted at the point p due to the direct action of particles in 

a di£fer~ntial volume element dV1 about a point p
1 

with position vector 1-1 relative 
~~ -+~ 1 ..... 

to the point c. In contrast to F(r ), f(r,f. ) represents the effects of internal 

forces in the body.· From Newton's third law. of ~otion 

-5!-? ~1 . 7.~1 ., 
f(r, r ) = -f(r , r) (A.6) 

The integral in C4!'is taken over the entire body, and dV1 is to be expressed 

in terms of the components of : 1 in a body-fixed reference frame. 

From Figure A,.l~-

n=}(+: (A. 7) 

The time derivative of(A.7)relative to the space-fixed reference frame is 

.. 
~ ~ +7 R = X . ; '·cA.s) 

It will be shown that 
. . 

t .1 -·. '·"" ~: . 

!>, ~ ..)-
r = .w~r (A.9) 

•.t 

~ 
where W denotes the angular velocity of the body. 

* In the present context, a function of¥, such as p(:i) is actually a function 
only of the components of 't·in'a bod~-fixed coordinate system. · I(1, t') and 
and F(t) and (D) are also functions _o time_. _ . . · . . _ ,_. . _. : .· ~ . 
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Let e,:, (i =1, 2, 3) denote orthogonal unit vectors rigidly fixed in the 

body,and e! ' (i. =1, 2, 3) denote orthogonal unit vectors in the space-fixed 

reference frame. Then 

.,... 
e~. 

where 

3 "'; 
<' ""J = ~:;.. Dl. e 
. 1 J J= 

r 
A ""J 

D.:j = ei•e 

· Since the matrix D with elements D .. is orthogonal 
. . .. c. J . . 

r, ;· ~ · .. : .D1 D = 'l 

(A.lO) 

(A.ll) 

T 
where D denotes the transpose of 0 and I denotes the identity matrix. From 

(J..IL) the inverse of(A.td is 

• ~: . ..~ :. ..... 

t :; ~- ·-. : ., f 
! . ·, 

and so 

• 

• . 3 T · · -~eJ - ~ o··-~· . - &... .. Jl." ... , 
i=l 

3 rr= ~ 
L=l 

T • 
Dji r~. 

where rj and rL., denote components of '1 in the space-fixed and body-fixed 

system.s, respectively. ' ·: · 

Equation(41<t)may be reexpressed 

0 .,.. b 
r = Dr. 

(A~ 12) 

(A.13) 

where ro and rb denote column vectors with components r ~and ri. respectively • 
. ·. ·'·.:. . J . 

· Sin~e 1 ~srigidly fixed in the body the 

Th~~ •. t.he time ·derivative~£ (A.l3) is 

·.. . . :· .. b' . 
column vector r . is time independent. 
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r• 0 -, o·T b - r . 

or employing the inverse of (8. J:S) 

• o aT o 
r = Dt>r 

Differentiating (e.m, one obtains 

(A.l4) 

... ·.· •... 

DT D. + ' OT 6 = 0 

or 
-~:·: . 

. r r T 
.D 0 + (o D) = 0 

So i:l Dis a skew symmetrix matrix. Accordingly, there exists a psuedo 
. . ~ 

· vector u:> such that * 
.. ' 

oT 
0 D = (W ®I .• 

(A.lS) 
.... 

where I denotes the identity tensor (or tensor idemfactor) and (W ~I ) 

denotes the matrix of the tensor ~®! . Substituting~/S)into(.416)leads .. to. 

• 0 
r 

·. . = (W®I Jr 

Since the time d~ri~ative of e; . ,' ' . . ·.. .· ' • • l. ~. 

is zero, the vector equivale·nt ofGA.,16) is ., 

or 

which agrees.withA.9 

4 (~ ·-)~ r = UJ®Zr. 

-+ -:}> 7 = w®r 

~ ; ~ 

. ( 

(A.l6) 

(A.l7) 

* It is clear from(AJ+)that in(AJ6)and(AJ5)the elements of('-'>~ I ) must be! 
exoressed in the space-fixed coQrdinate system •. By contrast, in the .relation 
D 0 = (W ®I) the elements o.f '(W® I) must be expressed_ln.the bodz.-fixed 
coordinate system. In the vector relations(A9)and(f\.17),w, t and~ may be 
expressed in any coordinate system. 
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The translational equation of motion is obtained by integrating,4.5)with .. . 
respect to r over the entire body: 

j(t)~ dV =Jf1(tt1
)dV

1 ~v 

where 

~ fl ~ 
F = ) F(r)dV 

-+ + F 
(A.18) 

(A.19) 

~ 
.evidently, F is equal to the net external force applied to the body. In(4./8) 

1 

dV is a volume element about the terminal point ~f ~. It is to be expressed in · 

terms of the components oft in the body-fixed. coordinate system. From (A- 6) , 

it is concluded that 

/Jr(t!:1
)dVdV

1 
= 0 

(A.~O) 

Since p(t) is a fu~~tion only~ of the components .of~ in the body-fixed 

reference frame, it is to be tre~ted as time independent in the integrand in 

·the left member. of(.4.18) • It follows that 

ft(i)If dV = d
2 ·jj(1)l. dV 

' d 
: . 

It is convenient to identify the point C with the c. m. of the body. Then 

(see Figure A·. 1) 

!"·". 

~ r· ~~ 
X = ..l_)f(r)R dV 

m 

where m is the total mass, given by 

m = jf(l)dV 

A-7. 

(A. 21) 

(A. 22) 

(A. 23) 
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Employing(4./9 -Azz}. V\18) reduces to 

m~=]t 

which agrees with"./)· 

The rotational equation is obtained from the volume integral of the· 

first moment of(A.S') about the point C (that ·is, about the c. m. ): 

... 

]f(t) ~ ® 1f: dV = jjt ® fct, ~1 ) dV
1
dV + it 

(A.24) 

where 

+ ·~ -++ 
N = Jr ® F(r)dV 

. 1 . ~. . \ 
Interchanging the dummy variables 1 and 1!. in the double integral in 

(A.Z4)it is concluded that 

J j1 ® 1(1, 11
) dV dV

1 = f f1~ f(~1, l) dV dV
1 

It follows from this relation and(A.6)that 

J ft ® 1('1, t 1
) dVdV

1 
= if s[~ ® f(1, ~l) + 11 

QD f(1\ 1) dVdVl 

= 1'ff [1-11
) ~1(~ 11

)dVdV
1 

'Z J . . 

Now, it is assumed that the internal forces in the body are central forces. 

Therefore 1(1, 11
) is parallel to a vector directed from the point p1 to the point 

p, that is, parallel to (~- ~ 1 ). From the foregoing relation 

ff1 ®1(t, ~l)dVdV1 = 0 
(A. 25) 

A-8 
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Since the vector 1 is directed from the body c. m. to the point p~ the 
. ~ 

total angular momentum (moment of linear· momentum), H, about the c. m. is 

given by 

'•: 
~-

' ~ ·. 

~' '·f"l ..... ~ 
H .. =J,~(r)r~RdV 

,:. ' ·. ~ - : 
(A. 26) 

Equation (A.2&Jmay be reexpressed 

it =fJJJ'(r1,r2 , r 3 ) [ r 1~1 h 2t2 +r303 ] ® ~ dr~dr2dr3 
/ 

. (A. 27) 
/ .. 

·where ri and e, are as. defined above. Since (A.9)is valid for arbitrary body­

fixed vectors it follows that 

A _,. A 
el = w ® el. 

\ 

Employing this relation, one obtains for the time derivative of CA. 27) 

• 
~ f -t- ~ .. .:... ,.ft ~ H = J(r) (W®r)®RdV +Jf(/)r®RdV 

Fr om{4. 8) and (A.9) 

jf·(1) (\3_®1) ®it dV = ~~(~) (~~1) ® (~~ t x t) dV 

= [~ ® fi ('t)'#dV] ® ')t = 0 

The vanishing of this-term is a consequence of the relations 

r ~ ~ J f (r)r dV = 0 --~· 

(A. 28) 

'""': . 

(A. 29) 

which follows from(A.22),(A. z:~) and(A-7). Employing(A.z5J.(A· 27) and (A. 24), (A. 28) 

reduces to .. 
I 

~ ~ 
H = N 
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which agrees with(A.Zl. 
., 

Substituting(Aa> into (Az6)and employing(;\.9) results in . 

~ .r.~ .. ....::.. r •• ... ~ 
H = J f(r)r ~ XdV + Jf(r)r ~ (~x r)dV. 

which reduces, by virtue of(A.z.9)and the triple cross product expansion, .to 

where 

~ 
H = ; • cl.· 

t/J. = Jf<t) [t.ti -11] dV 

(A.30) 

(A.31) 

Equation fA.31) is the ·fundamental defining relation for the tensor of rotational 

inertia about the c.m. It is apparent that ~ is symmetric •.. 
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A.2,_. COMPARISON OF LAGRANGIAN AND NEWTONIAN TECHNIQUES FOR DERIVING 
EQUATIONS OF MOTION 

This section is. included for completeness so that one skilled in the 

classical treatment. of rigid b·ody dynamics may fully understand the techniques 
' ~ ~ • • I • \: 

use~. in. the Cal.span model and realize that the, resultant equations of motion 

a~~ equiv~len~. 

pr.~~am.:~ 

A.2.1 Methods 

Unders~anding of.this section is not essential for use of the 

The classical treatments of holonomic constraints in rigid-body dy­

namics include the Newtonian method, the Lagrange method, and what may be termed 

the independent-coordinate method. The treatment employed in the Calspan 3D 

Crash-Simulation Model differs from each of the classical methods. It is similar 

. to. the Newtonian method,in that constraint forces are explicitly contained in the 

equations of-motion without the employment of Lagrange multipliers. However, in 

·contrast to the classical Newtonian method (in which explicit expressions invol­

ving-the constraint forces are obtained by force-diagram analysis), the Calspan 

Model employs constraint relations of the type employed in the Lagrange method. 

In lieu of the employment of Lagrange multipliers, these constraint relations 

are supplemented by additional relations, called compatibility relations, which 

. are inforced from Newton's third law and/or analysis.of_constraint-force geometry . 

. . 
Since the method employed in the Calspan Model does not appear to be 

documented in the published literature, the obje<?tive of this.section is to show 

that this method is equivalent to the Lagrange method~ . The first st.ep toward 

this objective is the proof, in the next subsection, that Lagrange-type constraint 

* The classical methods do not apply to the sliding constraint as indicated in 
Reference 11, page 15. 
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terms can be included in the Euler equations of motion. This proof is desirable 

since the equations .of motion employed in the Calspan Model are of the Euler 

type. 

In the subsection titled Equivalence Relations, the equivalence of 

the Calspan method to the Lagrange method is formally demonstrated, and it is 

shown that the compatibility relations which are employed in the Calspan formal­

ism can be inferred from the relations connecting the Lagrange multipliers and 

the constraint forces and torques. Finally, in the subsection titled Examples, 

the equivalence of the Calspan method to the Lagrange method is demonstrated for 

a few simple joints. 

A.2.2 Equations of Motion 

I 

The basis for the proof of equivalence given in the next subsection is 

·the vector form of the Euler equations of motion containing Lagrange-multiplier­

type constraint terms. These equations are first stated and·then·derived. 

For.L rigid bodies and M vector·constraint relations, the·equations 

of motion are: 

:.:....£ M ..._.../. -
M.£ X = i: .f. + F~ 

m:t ?>7 
(A.32) 

.1-=f,···L 

_:. M -..t. -
H:..t= L n-m. +N.J. (A. 33) 

m= t 

L { .& - .J. .t. 2: A 717 ·W +Bm 
1=1 

!...t} -JC + o,., =a 
m=t,···,M 

(A. 34) 

. '• 

-.L +.,., - L = "l • B Am m 
(A.35) 

7n = f
1 

• • ·, M 
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,. 

-..r.·· -· ..t ., ..,.,., = i\ '"' . A ""' 
;. (A. 36) 

where ·, . ,· 

.; ... ·" 

- .1. ;. .t tfo. .t • .1. 3 I ...t .1. ,1. ~· 
e · · • .H = '~';' lVI + r [ 'I.Ji. (A)-A tfiJc i "'l 
I t•t lt·t· · · · (A.37) 

defi~itions.follow: 

M.l . mass of 1 th body 

¢f moment of inertia of lth body about its ith principal axis 

~ net external force acting on lth body 

-N) net external torque acting on lth body, about c.m. of lth body 
"·' ~~ . ,.. . ... . ~·,.' . . . .. 

fh7 . .· const~~int force acting on lth body, due to mth constraint 

.. 
' 

_:!- '·~ .,( ._. ~. • ;l 1 1· I • t· • ~ 

.h~ constraint torque acting on lth body due to mth constraint 

-J H angular momentum of lth body about its c.m. . 

p~si~i.~n 've6tor ·of ~-~-·of lth body relative to origin of laboratory 
coordinate system .· ' · · 

: ~.R 

·l -"1. ·;·. ... '• 
W . angular velocity of lth body about its c.m • 

. ~ ,(·; ,4,. •.• '' .•. 

A,., tensor coefficient of w; in mth constraint relation 

B,! tensor coefficient of ~t in mth constraint relation 

D,., 

···-J e. 
J 

"" e. 
J 

J .. ._ 
LJ '' 

. , . .. ' . 
·coordinate~derivative-independent additive vector in mth constraint 
relation 

unit vector in direction of jth principal axis of lth body 

unit vector in direction of jth.axis of laboratory coordinate system 

alternating symbol equal to: 

0 if any two of the indices i,j,k are equal 

l.if ijk is an even permutation of 123 

-1 if ij~ is an odd permutation of 123 
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w.R 
L 

~hr 

)..,/<. 

x:' 
J 

.t 
a"'Kj 

d,l::. 

.R 
bh'lkj 

component of angular velocity of lth body about its c.m., in direction 
of ith principal axis of body 

vector Lagrange multiplier for mth constraint 

>..,.., • ~~ = ·Lagrange multiplier corresponding to kth component 
equation of mth vector constraint relat~on 

j th component of x_.t in laboratory coordinate system . 
"D ,R -.f ~ 
e" ·An, · ej coefficient of w. in kth component equation of mth 
vector constraint relation J · 

~~ -
e~ · b~ additive constant in kth component equation of mth vector 

constraint relation 
A b R ~ 0 

e,. · 8, · e; coefficient of 
vector constraint relation 

xf in kth component equation of· mth · ..! • 

The equations of motion have been displayed in the vector form because 

the constraint relations employed in the Calspan Model are inferred· in vector form, 

and are more compact in the vector notation. Even more.important, the vector 

forms allow flexibility in choosing optima~ component representations. Component 

equations corresponding to the vector equations are derived in'the following dis~ 
cussion. 

Lagrange-multiplier-type constraint terms arise most naturally from 
. . . 

the inclusion of·constraint relations in Hamilton's Principle. However, the 

Euler equations of motion cannot be ob~ained directly by the appli~ation of Ham­

ilton's Principle to a Lagrangian.which is identified with the kinetic en~rgy of 

the system. 

One way in which this difficulty can be circumvented is to obtain the 

Euler equations including Lagrange-type constraint terms by direct transformation 

of the Lagrange equations of motion in terms of the Euler angles. This approach 

is employed here. • 
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The starting point of the development is Lagrange's equations in­

cluding generalized forces and holonomic constraints. These are (Ref. 11, 

page 42) 

d. act rJ.t. -m 
- -- -- = L ~..e a.~.~ + Q~ 

'· d·b ·t!J~k' .. d1-!f •'. .J. -::. I . (A.38) 
lt=t,··· 1 N 

·. L: a..1-lt ~lt. + a;.. . = o ·.L=I,···,m 
~ (A. 39) 

. . 
where the ~K are generalized coordinates, the QK are generalized.forces, 

Equations(A.3~are the constraint relations, and the ·A~ are Lagrange multi­

pliers. In this formulation applied forces and constraints are included in 

the right side of (A.38) so the Lagrangian is given by 

;t_ {?t 1 ••• , 91Y' ir' ... iN)= T (r,, ... , 1N' ft 1 ". fN) 
(A.40) 

-:~here T d~ri·ates the· to:tal kin~ti.c energy of the· system expression in. terms of 

the generalized coordinates zj and coordinate derivatives aj 
.. The first step in the development is to particularize the relations 

in (A. 38) and (A. 39) to L .. rigid bodies with M holonomic constraints. and to the . .s . 
coordinates of interest. The coordinates for the lth body are the rectangular 

coordinates~ x.R. • of the body c.m. in the laboratory frame, and the Euler angles 
~ 

8~ ¢~ . . c.pR. : defined on page 107 of Reference 11. As indicated by Goldstein, 

these coo:t;dinates are suitable for the .Lagrangian formalism: For the sake of 

compactness of notation it proves convenient to employ the symbols €t R defined by 

. J 
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s1 = eL ) 
-.t ,!,.I. 
82. = 'I' 

-L " as = 'f ... (A.41) 

The Lagrange equations for the system may be expressed. i.Ji accord 

with (A.38) and. (A.39) as 

d d£. ar. Ms ..t. 
- - = L: .A, b,. +F..£ 

cit a·~ ax·./l. x, f 
l 7n af L 

i=-1, ···, 3 i ..i•f,··· ,L. 

Ms d t7£. iJ~ - a .:...~, - 8iJ . .t 
- L:. il -.L -.t. 

dt el 
- ,.,a?W.+N· 

. . ' .,_, &. l. 

L .3 [ . J - .L ..!. ..f. ..( • -l L ~ . am . e f + 6., . Xi 
.J.~t t=l t '. 

+ d?n = 0 

m:I,···,.M3 

and N _1. ~ In A-42 and A.43, F. 
1 1 

constraints are expressed in A.44. 
denote the generalized force_s. 

The kinetic energy of the system is given by: 

T= f L 3 ·{ .; .L .._)2 . . • .) t] 
2 2: 4 .'ft (wi + M,~. '(xl" . 

-l•! l=l. 

(A.42) 

. (A.43) 

(A.44) 

The holonomic 

... 
. (AAS) 

where the symbols .~ • M!l and w .R are defined in the context of equation·. 
1 1 . 

A.37. From Reference 11, page 134, and the symbol definitions in ,\.41 • 

..t. .!.....t. -.L .:..-t . -~ . . - .( 
cJ1 = et cos e, + e~ sot e, Sllf e3 

.t. .:....t. -.t ..:...t. • -.L. -..(.· 
t.)2. = -e, ~"·"' e a + ez. .s""' e1 cos s 3 

..t. .:..~ - ..t. .:. .L. I (A.46) 
c.u3 = ez. cos e 1 .;. e 

3
. 
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In order to obtain the Lagrangian of ·equations A • 42 and A. 43, it is only necessary 

to substitute for the w! in A. 45, emplo;ing A. 46. It has been verified that this 
. l. 

procedure yields the correct Lagrangian. The:substitution;is not necessary for the 

purposes of this development • 

,.•,: 
. ( 

:,· '.. ~ • < 

Employing the translation terms of A.45 equationsA.4~. become 

•• .L. 
M.L ;r i 

. JJ A 0 -
M, b ~ +. e { . F.t. . 

~ I" Am ml . . · • '•t .. ·,L (A.47) ~ ._, ···!$,...r. ' m=l t- ' · 

where .~~o and ':t ·,are ·defined in the context of_.A.32• · 

•" , . .._? u . 

~ ;i. ::. · ' - -The next step -in the development is the reexpression of A.43 in the 

Newtonian form with Lagrange-type constraint terms. From page 52 of Ref. 11, 

the generalized force Q. corresponding to an angle variable q. such that dq. 

._.,. 
• .=;.. 
:.·' 

J J J 
corresponds to an infinitesimal rotation about an axis with direction h is given 

by 

/'· 

> : ... , . ; -.. ~- .. 

, ·. -.:~ ' ~ ·.' : ' .... 

Q· 
I 

"" -+ = -n • . N 

.·.. .,·•· 
(A.48) 

~ I 

I 
i 

where Ndenotes the applied torque about the origin point from which q. is measured.· 
' J 

From page _107 of Ref. 11, d¢ . is an infinitesimal rotation about a space-fixed 

axis z, d 9 is an infinitesimal rotation about the line. of nodes, and d tjJ is an 

infinitesimal rotation about the body· axis z' . So letting (in accord with the sym­

bolism of A;·41) 

'At. 
el unit vector in direction of.line of nodes :for lth body 
7\t ez unit vector in direction of space-fixed axis z for lth body 

~} ~it vector in direction of,body axis z' f~r lth. body 
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it .. follows from A.48 that, in A.43 

-.1. :;;::.l __. 
Nc. = el .·"'.t. 

(A.49) 
where if1 is defined in the context of A.33 

As indicated on page 52 of Ref. 11, for an angle variable qj of the type 

under consideration, 

tiT 

rJ?; = ~ .. ? 
(A. 50) 

where T denotes the kinetic energy and L denotes the body angular . momentUJI , · .. · 

about the origin point for measurement of qj. Since in this development T ex­

pressed in terms of the q. and.q. is the same as the Lagrangian, .it is concluded 
J J 

that · 

arA­
a e ,. 

I 

::A.t· -.I. - e .. :H 
I 

(A. 51) 

where Ji.i · denotes the angular momentum of the lth body about its c~m. 

The forms of the left member and the last term on the right in A~ 43 .. 

are independent'of the constraint terms. It follows that, in the absence of 

constraints, 

d ·ax a,;:· ... .t - a e .l. . = Nt dt ae ~ l (A. 52) 

or employing A.49 and A.Sl, 

rJ. { ~·· ;~} a~ A'~ -- () 9.:1, = ~ ·~ d.t I (A. 53) 
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. ~t, ~ 

But, in the absence of constraints, 

"-11~ 
~ = -~ 

-I 

(A. 54) 

( 

{;, 

(A: 55) 

(A. 56) 

The relations A.51, A.55 and A.S6 have been verified by,direct evaluations in­

volving the Euler angles and the relations in A.46. This verification is a_ 

useful check on: the· correctness· of; the·· development •.. 

Employing A.49 and A.56, A.43 may be reexpressed, 

-;::.1-
ek • 

t:~.H'.t 
de = 

M.s 

G ;z a..t + 2.t. 
nz = 1 "' ~.(: . ~ 1 -

k=!, ... ,.:5; L=l, .. , L 

The relations in A.57 and A.44 will_ be.transformed·to obtain 

.,...R. e .. 
(1 

- /118 

d,JI.t = G A~ 
cit ?11='. 

::. 

a~~· r, , . .t. . ~ 
i = 1, 2,3-; .f.::si~···,L 
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L 3 

LL 
.£=1 i=l {a~ .t .I. . .J. } 

w1 ~ b~. ·;· + d. - 0 ., 
(A. 59) 

where ~jKdenotes a uriit vector in.the direction of the.jth principal axis 

of the lth body. 

To simplify the symbolism during transformation the super~cript 1· will.· 
be dropped and restored later in the development. ,Equations ·A.S7 and A.44 

become 

e . 
" 

-d,/1 

ott: 

.3 { . L a._,,; 
r:= 1 

= 

ll + 
e' 

M - -
n :l- r~·N w nr a..,.,~ k 

1tt=1 

b...,,- ..ii } + d.,., • 0 .. 

where in A.61 the sum over 1 has been suppressea. 

(A~60) 

(A. 61) 

· The transformations of A~60 and A.61 depend ·upon the transformations 

. (~) - (W_e) (A.62) 

(~)- (ek) 
(A.63) 

dropping the superscript 1 in A.46 and·employing A.41 one obtains the trans­

formation 

wh = ~ C/ .. tJ. 
"t' . t1 "'if ; (A.64) 
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where 
.·. : COoS' · ~ · ....S'/n a .s/n ~ 

~ .. ..,.-

c = -..Sir! (/ .St'118 008 ¥t 0 

0 C'O.S B ''I 
(A. 65) 

. •. •. 

The transform matrix C is nonorthogonal. The inverse of A.64 is 

a. 6 -! . 
::. 

s-~ u.l,t J ~ .. (A. 66) 
where ' .. 

·- r \ '~ • 

cc.-' = r 
(A.67) 

and I denotes the identity matrix. The inverse C-l is given by 

'·.· 
aos p · - .st'n "!" 

/ .·; 

-I s(?? 7/1 C'O.S 7/1 c = 
si'1 a ·sine 

· co.s & sin?/' - COoS' e COS ?t' 
.sine .Sln e .'/ (A.68) 

.It will be observed .that c-1 .is singular when 6 is an integral multiple of 7T 

This. point is disc.ussed below. 

!> To.obtain the.unit-vector transformation in (A.63), it is observed 

that"the angular velocity, ~.;is given by the relation 
: ... 

a~d'by the relation 
"- ;>! , 

.. 

w=l2 
I( 

;:J=C 
J 

1\ . ' 
~". W~:, 

A e-. &. 
l. / 
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The latter expression is valid since independent angular velocities 

add like vectors.* Stated alternately, infinitesimal rotati~ns can be repre­

sented by vectors, and independent infinitesimal rotations so represented can· 

be added like vectors· whether or not the rotations occur about orthogonal axes. 

Equating the two expressions for ~ yields 

~ ~k wk =- ~ 
k. J 

~ 
~. &. 
I ; 

Substituting from ~64 and observing that the resulting relation must be valid 

for arbitrary values of ~- ·,·one obtains 

€. - G ~ "" 
;· k ~k· ek 

(A.69) 
where ~ denotes the transpose of C. Since -, •. 1.·1 

-,.... 
{c-') = (c)-' 

, the inverse of A- 69 is given by 

......., 

~k = ~ -I .::\ 
c.l. e· 

Q '(J iJ (A. 70) 

Now, it can be shown that the singularity of C-l at B •0 occurs 

because** 

:;r -:;\' 
e- e .e 3 e=o 

(A.71) 
This degeneracy might cause difficulty in numerical integration-of A.60 ·in some· 

isolated cases.*** Such potential difficulty is not of concern in this develop­
! 

* Rigorously speaking, angular velocity is a psuedo vector. The distinction 
between pseudo vector and vector is not significant in.this·development~ 

** Since the singularity of c-1 at 8 .. 1171 is similar to that ate =0 we/need 
consider only the latter singularity point. / 

*** The degeneracy at e =0 must also be present in the corresponding Lagrange 
form of the Euler-angle-dependent equations from which A.60 was derived. 
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ment since the objective is the analytic derivation of the equations in A.S8 

and A.S9, which.are not affected by the degeneracy in A.71. 

To treat the singularity of c-1 
at 6 =0 in the trans.formation in A. 70 

it is only necessary to perform the transformation for (!!) = Ae and then, in the 

result, pass to the limit as Ll6l-. 0. • It is clear from A. 70 that the limit 

exists and is well behaved •. Consider the treatment of the singularity when 

and C-l are: functions of time, ·t .. Suppose 8(t). = 0 at t=t~ · In this case, one 

can 'employ A. 70 to evaluate ~ at time t and then pass to the limit. as t ..... t
0 

to obt~ain e~t.. af· time t 0 . • 'If C-l is a function of t but ~ =0 always, one 
"' . can again evaluate e,.. for B=4B and then pass to the limit as· .1~ ~ o . The 

singularity at & =0 in the transformation in A.67 can be handled ·by the same 

technique. With this understanding, the groundwork is 'com'plete f~r .the trans- )>-:'"'. 

formations of A.60 and A.61. 

Multiplying A. 60 by c~~ and summing over k yields 

.... Ms 

~ ·( ~ c~ ~). 
dll G 

L _, 
- "' :1.?'11 c"- .. a"'~ .. k dt-

?71""1 .{- ';I . 

Putting 

~ (. li_c;; ~). ;r ;· 
.• < · .... · ·~ L., _, a 

~;/ .. k . C1J. m.f: 

and emp~oying. A. 70: A. 72 reduces to 

-A . 
1!-. • d. H -
.:1:,: dt· -

. /113 >' ;'\ -+ 
L A.7?? a . + e. · N 

?n"'l · m1 . J 

The inverse of A.73.is 

Cinr,e = z; c;-~ 
tl. 
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Substituting (A.75) into (A. 61) yie Ids 

3 { . ..3 
£.. B. L 
,·., l j=l 

C .. a_· + /:, . i.} -1- et = 0 ;t ~~ "h?t t "' . ·.· 

Rearranging and employing (A.64) leads to the desired result 

E {Cl..m . w· ~ ~. i . } 
j=l 'J d .. . ::1 J 

+ · d :: o· 
nt 

··;. 

(A..76) 

Restoring the superscript 1 in (A. 74) and (A. 76), and the sum over 1 in (A. 76}. 
leads to the equations of motion in (A. 58) and (A. 59) • 

It has been shown that under the transformation '! . 

. • 

.t L.., £ .t, 
w = c" & . 

I:. l i J 

..l . 12 e. -I~ - J, a, . = . a 
~ k ~- ~ (A.77) 

where c:. is given by (A.46), the equations of motion in (A.57) and (A.44) 
~ . 

imply the equations of motion in (A.58) and (A.59). Since it has been shown 

that, subject to the proper treatment of the singularity of c-1, the inverse 

of the transformation in (A.77) exists, it is apparent that the equations of. 

motion in (A.58) and (A.59) imply the equations of motion in (A.57) and (A.44), 

Thus the equations (A.58) and (A.59) are completely equivalent to the equations 

(A.57) and (A.44), and accordingly, to the Lagrange equations in (A.44) and 

(A.43). It is readily verified that equations (A.47), (A.58), and (A.59) are 

identical, except for notation, to the component equations corresponding to the 

vector equations (A.32)-(A.36). 

The final step of the development is to express the left number of 

(A.58) in the Euler form. Put 

or 
~~ . .}. ..e ·-..t 

n ::: 'f • W 

-.L 
# "" 

)7 .... .lt.t .L 
G~. . 4). 

i I J I 
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Differentiating (A.78) with respect tot leads to 

now 

or 

d, ;i~ 

d.-t 

)' A~ A: . ..l • _1, 
=·~e. 'f. w . . . . d ; ~ 

;..e 
~- = 
/ 

.;...1. 
e = i : 

I ... 
. )' ;.. ./, rl. ~ .t 

+-~~-~·;· _; 
-.t r.-,.."" I!. w \6) e. 

I 

fl _t A.i r.A• A.{. 
LJ ~- e.l ~e. 
k . K ~ I 

The cross product may be expressed /1 ./, A .£ S'"' 1' . A e. @ e. = (...,J. o, .. e,.. 
k. .. J t' '*1/' .. t 

where 6k. .. 
J" 

is the alternating symbol defined above.* Thus 

Since 
,..R, J\.f (' 
e .. e. = o,J. t. J 

..:..l 
e.: 
; 

'P fT .l ;'\ ..€ 
= L..... L....t ~ .. w, e,. 

k. e' "'t K. t 

(A.80) and (A.79)'lead to the relation 

-.e. 
"' .. dH ·e. .• -

a J 

= cp _.e w . .t + £ E.. . w . .t u/~ a .. f· ~ 
: d. . J . i= I k. .. 1 t . ~ ,~'k. e t .. (J ' dt 

(A. 79) 

(A. 80) 

(A. 81) 
• .r, w. • • 

. which is identical to equation (A.37). ·The development of:the 'relations 

(A.32);(A.37) is complete. 

· .. · 

.. ,~1 
* .The principal axis directions have been labelled so that·e 

This labelling is in accord with (A.46) ·· ' 
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A.2.3 Equivalence Relations 

As mentioned above, the purpose of this subsection is the formal demon­

stration of the equivalence of the Lagrange treatment of constraints to the treat­

ment employed in the Calspan Crash-Simulation Model. No attempt is made here to 

independently derive the equations employed in the Calspan Model. Rather, these 

equations are inferred analytically from the Euler equations-with Lagrange-type 

constraints, and then the equivalence of the two methods is proved. 

The proof of equivalence hinges on the relations 

L 

G 
.£=1 

..... .1. - . .t = ;t • a.t 
?It "' '7.1? 

--.t 
'?1 = 

??t 
1 ·A-.1. 

"' ""' 
?'Jt, • I, . • • M. 

{A.;. w.t+ L 
; .t. } + . o"nl = o 8 . 

7H 

?>t• 1, ••• , /11 
-

(A. 82) 

(A.83) 

'(A.84) 

which are the same as the relations (A.35), (A~36), (A.34) of the prevjous 

-' -

subsection. Following a discussion of the characteristics of the vector Lagrange. 

multipliers, it is shown that the relations (A.82)-(A.84) imply the_compatibility 

relations, which can be employed to convert the equations of motion from the 

Lagrange-multiplier form to the constraint-force from employed in the Calspan_ 

Model. 

The constraint relations· (see (A.84)) are expressed in the vector form 

since this is the form employed in the Calspan Model. However, the formalism 

is immediately applicable to scalar constraint equations (such as the torque­

type constraint relation for the universal joint-- see the subsection Ex~les.) 

To see how this is done, suppose the mth constraint relation is scalar. One 
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can then put 
d =- 1 - 0 
~.z. c;r..nr.a -

,£, -. 
cz,ntZ;" 

.t • 
cz,nt.3'j 

.J., 
6 <>· 

.e ' 
.. b'??f.J .. = 0 

'I ?If .c.,; 

and equations (A~82),(A.83), and (A.84) reduce to 
' --...t· . J .l 0 

I == A. E .b . ~-
• ?'% »t! ,j•! "'';: Q 

.! 
..,..fl }1 .t ""l 
-n ... A. LJ a e-· 

-""'· · mt i=t -~'i I 

(i = I,~ .. ~ .J 

== 0 [ l2 . a,.t '' 
'.j L. { .·. 

:i .. , .I.-sf ??f 'i 
.£ .e • .e.} w. -1- "-! . .:t. . .+ d J "'./ J . "'-I 

(A. 85) 

(A. 86) 

When, for a particular value of m; the relations (A.85) are employed with 

(A.82), (A.~3), and (A.84), the solutions fo.r )...,., and ">..,.,3 are totally am-
z -

biguous. These ambiguities do not affect the solutions for f-f ;;.i' and m ' -,,.,.,. 

other physical quantities of interest. 

There are other cases in which certain ones of the Lagrange multi­

pliers cannot be uniquely determined. A case in'point is the vector _Lagrange 

multiplier which corresponds to the torque-type constraint for the hinge joint 

. (see the subsection: Examples). The lack of uniqueness of the-vector Lagrange 

multipliers corresponding to some vector constraint relations is probably due 

to the presence of redundant information in these relations. The removal of 

such redundancies, while unnecessary, would probably usually be desirable in 

applications based on the employment of Lagrange multipliers.*. By contrast, 
' . . 

in the formulation employed in the Calspan Model, the removal.of such redun-

dancies in the constraint relations is sometimes both unnecessary and undesirable . 

. Th~re is a twofold reason for this circumstance. First, in .the Calspan 'formu­

lation, the direct removal of redundancies in the constraint relations would 

* The-removal of redundancies in the constraint relations is not absolutely 
essential because ambiguities in values of the Lagrange multipliers-do not 
result in ambiguities in the solution for physical quantities of interest. 
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sometimes result in added complexity in the formulation. Second, in this 

formulation, the constraint relations are supplemented by additional relations 

(the compatibility relations) which usually prevent the ambiguities i~ f~ 
and n~ which, in the Calspan formulation, would otherwise result from 

redundancies in the constraint relations.* Ambiguities in the values of the 

Lagrange multipliers have no effect whatever on the solution since the Lagrange 

multipliers are not employed in the Calspan formulation. 

The foregoing discussion provides essential background information 

for the ensuing discussion on the relation between the Lagrange-multiplier 

dependent formulation and the formulation employed in the Calspan Model. In 

particular, in eliminating the Lagrange multipliers from the equations of 
·- . 

motion, it cannot be assumed that the transform relations in (A.82) and (A.83) . . . 
can be inverted to obtain unambiguous expressions for the vector Lagrange multi-

1 . . f h . . -J f.-~ A1 d L . T d . h . h p 1ers 1n terms o . t e quant1 t1es ntrl , 11 , . , an Bwr • o eterm1ne ow t e 

Lagrange multipliers can be eliminated from_ the formulation, it is necessary to 

achieve an understanding of.their ultimate role in the equations of motion.** 

* Some types of redundancies (such as those resulting from the inadvertent 
employment of two distinct yet mathematically equivalent constraint re­
lations) could not be offset by the compatibility relations. Such redun-· 
dancies could result in ambiguities in the solutions for individual constraint­
force and/or constraint-torque terms, but they could not affect the solutions 
for either the coordinate variables or the net constraint forces and torques. 

** The content of the preceding two paragraphs can be better understood in 
retrospect, after reviewing the entire development of this section. 
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It will be recognized that the vector Lagrange multipliers, ?...., , . 

have no physical significance;* and further, in the entire formulation, they 

only appear in the relations in (A.82) and (A.83). Therefore, from the physical 

and mathematical standpoint, the only value of the Lagrange multipliers lies in 

what thefr existence in the relations (A.82) and (A.83) implies about the rela­

tionships between, the quantities . F,/ _, ii~ , e!,. and A!, .. Accordingly, it is 

·clear that the relations in (A.82) and (A.83) can be replaced by any other re-
. ':.. . .-------

lations which are equivalent to (A.82) and (A.83) with regard to implications 

about the relationships ·between the quanti~ies F;.,.,( , ii_;f , 8/Tl.R and A,! and which 

imply ~othing whatever except these relationships. 

For reasons discussed below, the relations between the quantities· 

F;,~, n!,, e,;and At which are implied,by (A.82) and (A.83)are called 
... . . - . . . . 

_.compatibility relations .. As stated above, in the formulation employed in the 

Calspan Model, the Lagrange multipliers (and, therefore, the relations (A.82) 

and (A.83) are replaced by the compatibility relations. In this development, 

thenature of these relations will be inferred from the theory of equations. 

Two lemmas will be introduced, the first of which is: 
~; . 

·~ 

, .. 

Lemma 1 

.·,. 

\ 

The equations 

'. 

...,..t 
~ 

'I 

-..t 

.... 
- A. • 

""' 

-'77 . = ..:l711 ?n 

B.t 
nr 

/lL 

"' 

,.·.·} 
.. 

.. 
m=I, ... ,M 

.L ==l, .•• ,k (A. 87) ·· 

* Those instances in which one or more of the vector Lagrange multipliers are 

equal to constraint forces,or torques.are exceptions to this-statement. 
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- -,1 ._) 
have at least one solution for the 'A, if and only if hm and f,., satisfy 

the compatibility relations. 

I.. "1 { . [ L. -;e 
i.=l m.:f 'Jm 

-..t -; 
I + C. • 
"' 1!"' 

-.t } = 0 
"""' 

i.d/, ..• , /11-.Z 

(A.88) 

_. 1. -i . 1' ..t' ,_ . 
Where ~"'and (!b, are determinable functions of A,..,. and 8,. (,l,.J, ... '- i "'.:.=/ .. ~,.,), 
I is equal to the rank of the matrix of the N component equations corresponding 

to (A.87). and 

N= 6LM (A.89) 

Except for the symbolism, this lemma is identical to a mathematical 

criterion which is proved in Reference 12, page 245. The compatibility relat1ons 
. . 

in (A.88) are. except for notation. identical. to the ·conditions of-compatibility 

stated in the reference. They are called"conditions of compatibility'since,·if 

they are not satisfied. the system of equations in· (A. 88) · has no solution.· or· i~ 

incompatible. It is in keeping with the employment of the term compatibility in 

Reference 1. that the relations in (A.88) are termed compatibility relations. 

_, -i 
The coefficients ~111 and e~in the compatibility relations can be.' 

evaluated from the determinant equations given on page 245 of Ref-

erence 11. However. in the examples given in the last subsection of this section, 

the compatibility relations are quickly obtained by analyses (or mathematical 

inferences) employing relations of the type in ~.87). As stated in the sub­

section Methods, the compatibility relations can be inferred directly from 

applications of Newton's third law and/or analyses of the constraint-force geo­

metry. Prior to the analysis presented here they were always obtained by the 

latter means. 

Though vector notation is employed in expressing the coefficients 
-.: 
~,and 

-i . 
e~Min (A.88). these coefficients are not always vectors. In some cases 

they are (non-invariant) linear combinations of elements of tensors. In such cases, 
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certain ones of the compatibility relations in (A.88) can be combined to obtain 

invariant vector equations. In the examples in-the last sub-section of this 

section,· the compatibility relations are always expressed as invariant forms 

(that is, as invariant-scalar and vector equations.) 

The satisfaction of the·compatibility·relations by the quantities 

:{.;- ~nd · ~!, cannot be verified unless the 'values of these quantities are known. 

But the values of these quantities· cannot be obtained until the equations of mo­

tion have been completely solved. For this reason, the compatibility relations 

·must· be'· regarded as constraints· on 'the values of the quanti ties fw,.f and Ji,! 
· ' As "implied above~ .: the· compatabili ty relations cannot introduce more information 

<than that which is inherent·in the relations (A:B7), which they replace. 

For the sake of tidiness and vigor of exposition, it is desirable, in 

the transition from the Lagrange-multiplier formulation to the formulation em­

ployed in.the Calspan model, to replace the relations in (A.87) by mathematically­

equivalent relations. Since it cannot be claimed that the compatibility rela­

tions in (A.88) are completely equivalent to the relations (A.87), a complete 

equivalence will be established through Lemma 2. · .. 
: ., 

· If the relations 'in (.A.87) are solvable, they are mathematically equiv­

. alent to the compatibility relations (A. 88) taken in conjunction with parametric 

···:expressions which express the general solutions of the relations (.A.88) for the 

· quanti ties · :: 
': . : ·~' 

In proving Lemma 2, it will be convenient to_ introduce the expression 

~ '"I 

1m= ~ [r~'J .t' t.: ( -.t') (- ..t/ J (,qm), (13m.,), f',.., , . n:>K,} 
(A. 90) 

. \,. 

to represent the parametric· form of· solution of ( 4.114) for the ~..., . . In 
' ' )'· . ·. ~:, J' . .1' J' • . • I ' 

(A..90), (A,.), ( e,.,. ), ( fm· ), ( 'lm· ) denote sets for _t. ... ~ ..• t. j#'J'=-f ... . ,... 

and ( ~- ) = an arbitrary - parameter set di. , i. .. 1,. . . 3m -I • The arbitrary 

value parameters, · ~i , express the arbitrariness in the solutions )('" of 
... 
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the relations in (A.87). If the rank, ~,of the matrix of the system (A.87)is 

equal to the total number of unknowns, 3M, (the M ·vectors, )("' have 3M compo­

nents) there are no arbitrary parameters, di , and the vectors, ~n, , are uniquely 

determined. If 3M > Ir, there are 3M-\-parameters d;. • 

To prove Lemma 2 it must·be shown that, if the relations:(A.87) are 

solvable, then the relations (A.87) imply and are implied by the compatibility 

relations (A.88) in conjunction with the solutions in (A.90). 

The forward implication follows immediately from the discussion on page .. 

245 of Reference 12.* The reverse implication follows, _provided that subject to 

the satisfaction of the compatibility relations, the solution for the A~ , rep­

resented in (A.90), satisfies the equations (A.87). The discussion on page 245 

of Reference 12'indicates not only steps which can be taken to obtain a general 

solution, ·but proves (again subject to the satisfaction of the compatibility re­

lations) that the general solution so obtained does indeed satisfy the system of 

equations in (A.87). Thus, Lemma 2 is valid. 

With a simple proviso, the condition of solvability of the relations 

in (A.87) can be removed from the statement of Lemma 2. This proviso is in that 

it be understood that incompatibility in the relations (A.87) is equivalent to 

the failure of satisfaction of the compatibility relations. This proviso is, of 

course, just the statement of Lemma 1. · With·this proviso, it can be stated (with­

out further qualification) that the relations in (A.87) are mathematically equiv­

alent to the compatibility relations, (A.88) taken in conjunction with the ex- · -press ions (A. 90) for ').., . 

* In Reference 12, arbitrariness in the solution for the unknowns is brought out 
by showing that 3M-Irof the unknowns may have arbitrary values. Clearly, the 
assignment of arbitrary values to 3M-~unknowns is equivalent to the intro­
duction of 3M-~arbitrary parameters, as in the representation in (A.90) 
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The transition from the Lagrange-multiplier-dependent formulation to 

the formulation employed in the Calspan Model is· now obvious. In the former 

formulation, the relations in (A:87) are employed. To obtain the latter formu­

lation, ~he relations in (A.87) are replaced by the·relations in (A.88) in·con-
... 

junction with the relations (A.87)~· It is clear that the compatibility rela-

tions (A.90) represent the result of eliminating the Lagrange mulitpliers from 

the equations of motion. Thus, in theCalspan formulation, the solutions for 

the physical quantities of interest can be obtained from the equations (A.32), 

(A.33), (A.34), and· (A.88), and.the expressions for ~min (A.90) are not needed. 

The exposition and proof of the mathematical equivalence of the Calspan formu­

'lation to'the Lagrange•multiplier-dependent formulation.is·now complete. 
,. 

... - . 

: ~ '; ~ _,. ~·· Since the·constraints which are imposed by a simple joint involve 

only two rigid bodies, ·for· each· value of m· in the constraint relations, ~ · 
and 8~ vanish for all but two values of 1. For the purposes of the analyses 

of joints given in the next subsection, it is desirable to identify each con­

straint relation in terms of the bodies involved. To this end, the subscript 

m in the quantities t1, t;nr.f, A:, e1 can be interpreted, not as a simple sub­

script but as a triplet subscript: • ·. 
,. 

'· 
\: "' 

"'· ·.·" ·. ' ~.. . ~ = (k., ..t, -n). · (A. 91) 
-'.· < 

In. (A. 91), k and 1 are labels of th~ interacting bodies and n denotes a particu-. 

larconstraint resulting from this interaction. For example, 

(1,3,2) 

means the second constraint relation resulting from the interaction (through a 

joint) of body 1. with body 3.' Clearly (k,l,n) and (l,k;n) refer to the same con­

straint. 

If m=(k,l,n), fi, Hj, 11;, '9), all vanish unless k f. 1 and j is equal ,., ,., 
to k or 1. Thus, in the triplet notation, lA.82), (A.83), and (A.84) may be 

re-expressed: 
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/l.e . ;;; K.+ .J?.t. ~.L -1- 8k.. .:.k J. -.iJ ..... 
~ +-13 • Z + D -o 

"771 "' '"' 
7?C 7n 

-it. 
; • 8-': -~ 1 · B~ .,t' .:: ~ = bf ~ "'' 7W nr ., . 

;;"-= 1 . .1?1:. -L - 1 
71"" 

: ;z • .R?W 7n -we "f ' :on 

., 
( k' ~' ?t) 

(A.92) 

Since a single joint can only transmit one net constraint force and 

one net constraint torque to a given body, there is, for a given joint, a maxi­

mum of two vector constraint relations. In the next subsection, the constraints 

are categorized as force-type and torque-type constraints. 

A.2.4 Examples 

In this subsection, the constraint relations corresponding to four 

simple joints are expressed. In each example, the compatibility relations are 

inferred, and the mathematical equivalence expressed in general in Lemma 1 and 

Lemma 2 is demonstrated. In the case of the hinge joint, it is shown that the 

compatibility relations offset the effect of the redundancy in the constraint 

relations. 

The analyses depend only on the relations in (A.92). Since for each 

constraint only two rigid bodies are involved, there is no loss of generality 

in labeling our body by the index 1, and the other body by the index 2. The 

relations in (A.92) can then be re-expressed. 

/. _,./ / 

/? . w + '.B 
~I 
z - -

7t ~ 
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_, - ~2 ... 
I' ). 

I I 
z. 

= . 6 = :1. . B , n 'Z ' ?Z.. ~ ?t (A.94) 

. '-' - I -z - z 
' ~ = A. n • . .A'n ; ?1'71 

= :I. . ,<;1)7 
7t n (A.95) 

where the subscript n can be identified with n in the definition of the triplet 

subscript min (A.91). The additive vector, ~n , has been deleted from there­

lation (A.93) since it is zero in the cases of interest. 

·There are, at most, two constraints corresponding to each joint. In 

the first type of constraint, which will be labeled n=l, the tensors B~ and e: 
are nonvanishing and they have inverses. ·Thus, the transforms in (A.94) can be 

inverted and the constraint torques can be expressed as linear functions of the 

constraint forces. This type of constraint (n=l) will be termed a force-type 

constraint. 

In the sec·ond type of constraint (n=2) the constraint forces vanish. 

This' typ~ .of constraint will be termed a torque-type constraint. 

'"Every joint has exactly the-same force-type constraint, and all joints 

except the ball joint have both force-type and torque~type constraints. For this 

reason, the ball joint is discussed first. 

A. 2. 4·. 1 The Ball Joint 

The basic geometry of the rigid bodies and the joint is depicted in 

Figure A.2. 
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body 1 

.J 

x, 

Inertial Reference 

Origin 

Figure A.2 BASIC .RIGID BODY GEOMETRY 

body 2 

The vector rf is the position vector of the joint relative to the 

c.m. of body 1 and the_ vector- ii is _the position vector. of the- same joint rela7 
tive to the c.m. of body 2. From the figure 

...... ~ ........ 
x1 -r r, = x 2 + r2 

(A.96) 

Since the position of the joint is rigidly fixed relative to both bodies, it is 

clear that J ~-/ , ( j = 1, z. ) , is constant, and the orientation of t;· (). = 11 z) is 

completely determined by the orientation of bodyj ,(j~~2). The orientation of­

j ( j :::l,z) can be determined from the relation: 

1\o e. 
J 

= L s-!. 
i t..j 

/1./, 
e· 
" (A.97) 

Where the unit vectors ~~and e.1 are defined in the content of equation (A.37) 
J J 

and ~: denotes a direction-cosine matrix. From (A.97) 
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- /lo L ..t"'.t·-l. r.·e. = S .. ·e· ·r. 
N .J , f.J f. .<:; 

t (A.98) 

Since ~ is rigid relative to body j, • its components, e/ '"F..t , in the body-fixed 

coordinate system are time-independent constants. Therefore. (A. 98) may be em­

ployed to determine the components of ~ in the space-fixed coordinate system. 

The transform (A.98) can be re-expressed in compact vector notation by 

introducing the vector ~0 given by 

- .. ro _ ~ AoA.t--
~ - ~ ei ei . ~ 

" 
-o Clearly, the vector ~ is constant. From (A.99) 

substituting into (A.98) 

whence 
-- "o ~. ej 

-

ro 
.t 

/\0 

ei 
-- A). = t:, . ei 

"\" ..l "o -o 
== L.... s. · e. · r,~, . ') {, 

t. 

r:t = ,....t -o s · r.t -t= !,'}.· 

Where 5 i denotes. the transpose of the tensor s.f given by. 

From (A.lOO) 

j ~ 

S = "' ""'os..l""o '..t L L e. .. e. 
i.::lj.r/ {, 'J J 

. 
- - J, -r:.z = w ® r,t 
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which may be re-expressed 
.:... . ~ r: = -V-1 • ~ ). . . ). 

R . 
where VV denotes the skew-symmetric tensor 

w.J = - r ~ zo .J, = - ~), ~ z 

and I denotes the identity tensor. 

Differentiating (A.96) and employing (A.lOl) results in 

--, .... , -x + (.1.1 ® r1 
~.% -:z -= :t: + UJ ~» r:;.. 

(A.l02) 

(A.l03) 

(A.l04) 

Equation (A.l04) is, from the foregoing discussion, a force-type constraint re­

lation. It represents the force-type constraint for all the joints discussed 

in this section. 

Comparing (A.l04) and (A.93), it is concluded that 

13' 
I 

;l. = a, = r 

-11 ; =- -I®r1 , 
~ 

A~ = I® "'z 

Substituting into (A.94) and (A.95) and rearranging, results in 

... , 
f, 

.... , 
n, 

.... 
= 1\ f J 

-.z -.f, = -A., 

- .,.. •:l .... -= rt ® 1..1 3 n,. lC - r'z 0 -;.., 

The general solution for ~' is clearly 

-i\f = 
... , 
F, 
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The,compatibility relations are obtained by eliminating A, from the equations 

(A. lOS): :. ·. 
_... -"'·+- .p~·- o·. .'1 f - . 

_, - _, 
nf -= If Ob 1!1 j 

... 2 - ... :z n, = r~ ® -f', 
} 

(A.l07) 

clearly, in accord with Lemma 2, (A:l06) in conjunction with (A:l07) implies and 

is implied by (A.lOS)~ 

In the formulation of the Calspan model, there are four vector un-

knowns. f. I 7_ 'Z n I n :z. • corresponding to the ball joint. Since the compa ta-l' T,) I J '· . 

bility relations, (4 .134), in conjunction with the constraint relation, (A.l04), 

constitute four vector equations, the number of unknowns. In the Lagrange-multi­

plier formulation there is one constraint-induced unknown (namely ~. ) and our 

corresponding constraint equation,(namely (A.l04~. Again, the number of equations 

is equal to the number of unknowns. 

·.. · ·. The relation ~CA.96) is employed as an initial condition. In principle, 

the satisfaction of (A.l04) would insure the satisfaction of (A.96) for all times~ 

However, it has been found that because of accumulated computer-round-off-errors, 

the employment of (A.l04)' in the computations does.not insure the satisfaction of 

(A.96) for all -t. For this reason, both (A.96) and (A.l04) are employed in the 

computations, but not i~ a redundant manner. In particular, (A.l04) is employed 

with (A.l07) and the differential equations to solve for x', F, and~. (A.96) is 

then employed'to obtain" xz. This procedure·insures the satisfaction of (A.96) 

for all times, ~ . A parallel procedure is employed when there are more than 

two bodies and more than one joint. 

Since the ball joint is completely flexible, it has no torque-type 

constraint. 
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A. 2. 4. 2 The Locked Joint 

The locked joint is a joint that has seized or frozen so that it has 

zero degrees of rotational freedom. It has several uses in the Calspan Model, 

including the representation of a human joint which is locked due to muscle ex­

ertion. 

The force-type constraint relation for the locked joint is, as already 
' . 

implied, the same as for the ball joint. Since the locked joint has no rotation-

al degrees of freedom, it forces the equality of the angular velocities of bodies 

1 and 2. Therefore, the torque-type constraint for the locked joint may be ex­

pressed 

-, ... 2 .w .::: w 
(A. lOS) 

To verify that (A.l08) and (A.l04) adequately describe the locked joint, it is 

observed that the rank of the system (A.l08) and (A.l04), when considered as an. 

equation in the unknowns wz. and Xz, is six. Thus, (A.l08) and (A.104). re­

move all six degrees of freedom in the motion of body 2 relative to the.coordi­

nate system of body 1. In other words, the two bodies behave as a single rigid 

body. 

Comparing (A.l08) and (A.93), it is concluded that 

I 2. 
Bz = Bz = o 

~~~ a-:-1/:.=z· 
Thus, the constraint forces corresponding to (A.l08) are zero, and (A. 95) be-. · 

comes: 

...... , 
n :z: 

..... 
= ;:1. .z .J 

~:z 

nz = --- i\.z 

Eliminating A~results in the compatibility relation 

_, - :z nz + n:J • o 

A-40 

(A.l09) 

(A.llO) 



There are, for the ~alspan formulation, the_two .unknown constraint .torque~ h: 
and Rz~· These can be eliminated from the equations of motion by employing 

·I • ' 

(A.llO) and (A.l08). 

A. 2. 4. 3 The Hinge Joint 

The hinge joint has a single.pin, the orientation of which can be de-
. . . . .. ,, 

noted by the. unit vector. h, . Since·the pin is rigidly oriented relative to 
. . \. 

body 1 and to body 2, it mus~ rotate· with each body. Therefore, in parallelism · 

with the relations (A.lOO) and (A.99), ·one can put 
'• 

1\ .-vf 1\0 
h, ::. s . h 

} 
1 

A 

=S2·h~o 
where 

h, 
(A.lll) 

Ao L -"0-" I 
A 

h1 = e· e· . h1 
l " (, 

h% = E Ao II :z. 
e;, ei 

A 

• h 1 

II., 1111 {, 

Clearly; h, and hr. are constant vectors. The fundamental· constraint is the 

satisfaction of (A.lll). From the time derivatives of the relations m (A.lll), 

one concludes 

-1 A -2 /\ 
w (5] h1 = w fi!) h1 

(A.ll2) 

Equation.(A.ll2) is the torque-type constraint relation for the hinge joint. 

Comparing (A.l12) and (A..93), it is concluded that 

... 
I 2 

8~ = 8 2 = 0;, 
z· I A 

. ll :z = -112 = I tD h, (A.ll3) 
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and the expressions for the constraint torques in (A.95) become 

_, 
nz 

clearly, (A.114) implies 
/ .. 

-- "' = -A~ ® h1 ; 

-, -z nz +-nz = 
-, n:z . ~., = 

-:z -- "' nz = ft.~®h, 

0 l 0 

. (A.l14) 

(A. US) . - ~ To obtain the solution for Az., one can take the cross_ product of It, and the 

second of the relations (A.ll4): 

"' -:z "' - 1\ h, ® n.z = h1 <ZJ ( A.z Gi' h1 ) 

- " - A 

= 'A~- - h, · i\, n, 
or rearranging 

-- " --:~. 1\ 
.... -;?.z = h

1 
CSI' nt + h1 ·J.. 2 ·h, (A.ll6) 

But, (A.ll4) implies that ~is ambiguous to within·an arbitrary multiple of 
" . h, . This fact and (A.l16) lead to 

~ ...... --:z "\ 
:\ 2 = h 1 @ n 1. + ah 1 (arbitrary a) (A.l17) 

as the general .solution for " 'l2. • 

Substituting (A.ll7) into the second of the relations (A.ll4) 

-z (" --.z "') 1\ n1 = h1 ® n2 + a.,h1 f!J_ h 1 

-- 2 1\ _., t. "' = nz - ht . nz h, 

which reduces to an identity by virtue of the compatibility relations (A.llS). 
I 

Thus, (A.llS) in conjunction with (A.ll7), imply (A.ll4) 

This example is the first in which the.solution for;( is ambiguous. 

The ambiguity results from redundancy.in the constraint relation (A.ll2). 
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" This relation only. constrains (w,-wz.) to be paralled to h, , so the 

rank of the matrix for the relation is two. On the other hand, the relation 

corresponds to three component equations and Az has three components. In the 

Lagrange-multiplier forrnulati~n, the ambiguity in Az could be removed by an 

additional constraint such as ; · \''· 
-- A 
1\ 2 ·h, = O. 

which can be satisfied within the arbitrariness of the solution in (A.ll7). 

Turning to a consideration of the formulation in the Calspan Model, 

there are two vector unknowns, hi and ~z, which result from the torque-type . . . 
constraint. But the rank of the matrix of_the system composed of the constraint 

relation (A.ll2) in conjunction with the compatability relations (A,llS) is 

six. This rank is the same as the rank of two non-redundant vector equations. 

Therefore, the equations of motion can be solved without ambiguity. 

A.2.4.4 The Universal Joint 

The double-trunion universal joint has two hinge pins, of which the. 

axis of one is rigidly oriented relati~e to body 1, ·and the axis of the other is 

rigidly oriented relative to body"2. The only rotational constraint in the 

joint i.s · ·th.at the ~two hinge pins ~re alw~ys perp~ndi~ul~r. ·This constrai~t can 

b:e. expressed by the relation 
1\ 

h1 
/\ 

ht = 0 
(A.ll8) 

~ 

where ~ is a unit vector in the direction of the pin which is rigidly oriented 

relative to body j, (1.=1,2..). 

Relations similar to (A.lll) can be introduced to express the orien-
" J\ 

tations of It, and hz. Differentiating (A.ll8) with respect to t results in 

/\ . /.\ --~ A A --z 
h 1 tiJ hz · w = h 1 ~ hz · w (A.ll9) 
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,j 

which is a scalar constraint relation. It is equivalent to the vector con­

straint relation 

/"tJ-" I\ _., "'O" A -z 
e1 h1 ® hz • w = e1 h 1 ~ hJ. · w (A.l20) 

Comparing (A.l20) and (A.93), it is concluded that 

f % 
8;. = 8;, = 0 

A; - ;a "o"' "· -A2 = e, h1 8 hz 
so . (A. 93) becomes 

-, -.e - ./\0"' ;'\ n 2 ,. n, = A:. • e1 h, @ h, 
(A.l2l) 

If J.~· ~()is replaced by the scalar Lagrange multiplier ~ , the relations (A.l21) 

are identical to those that would be obtained from the approach which is formal-

iz~d in (A.85) and (A.86). It is of academic interest that the vector fz may be 

retained and the ambiguity removed by the supplementary relation 

- 1\0 
;\2 @ e, = 0 

(A.l22). 

which restricts 'iz.. within the range of the general solution of (A.l21) for ~& • 

Since (A.l22) has a rank of two and (A.ll9) has a rank of one, these two re;. · 

lations do indeed remove ambiguities in Al in the solution of the-equations of 

motion. 

The equations (A.l21) imply the compatibility relations. 

-, -:z 
nz + n2 = o. } 

(A.l23) 
_, ("' " ) n1 " h 1 x h 2 =- o 

The general solution to (A .121) for ~z. is 

~ -= 
..-, (" " -o n7. • h1 ® h2 } e1 

Ill "lz h1 46 n2 

- "'0 + a, ® e, (A.l24) 
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where a is arbitrary. To prove this, (A.l24) is substituted into. (A.l21). The 

resulting relation 

_, 
nz l -1iJ. · ( h (: ~ )l ( h, ·~ hz) 

-=- 1/\ h I ] · h1 ® z 

is implied by (A.l23). Thus (A.l24) and .(A.l23) imply (A.l21). It will be ob­

served that the expression. (A.l24) can be simplified since, from (A.l18), 

I h, ® ;;;z. I .. 1 

In the Calspan formulation, the torque-type constraint in (A.ll9) leads 
. _, - .. 

to two u~known constraint' torques, hz and hzz. Since (A.ll9) has a rank of one, 

and the total rank of the relations (A.l23) is five, the equations of motion can 

be solved unambiguously . 

. , •.. 
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