Research to Determine Causes of Aortic Injury in Near-Side Crashes

The George Washington University
and
The William Lehman Injury Research Center (WLIRC)
Research Objectives

• Define Crash Characteristics Causing Aortic Injury
• Determine Aortic Injury Mechanisms
• Recommend Injury Criteria
• Recommend Critical Test Procedures and Test Dummies
Outline

1. Why Did We Study Aortic Injuries?
2. Approach to the Study
3. Selected Results to Date
4. Continuing Aortic Injury Research
5. Findings & Recommendations for Future Research
Typical Cases with Aortic Injuries

Cases from the William Lehman Injury Research Center (WLIRC)
14 MPH - FATALITY

• Driver, 62 Y/O Male
• 68” Tall; 174 Lbs
• 10 O’clock
• 13” Max Crush
• Injuries:
 AIS-6 Aorta
 AIS-5 Rib/Lung
 AIS-4 Lower X
• Alert on Scene

Case Vehicle - 1990 Lexus 250
Bullet Vehicle - 1983 Olds Cutlass

Case 96-008S
19 MPH - NON FATAL

• Driver 49 Y/O Female
• 67” Tall; 240 Lbs.
• 10 O’clock
• 20” Max Crush
• Injuries:
 AIS-5 Aorta
 AIS-4 Rib
• Alert on Scene

Case Vehicle - 1987 Buick Park Ave.
Bullet Vehicle - 1992 Lincoln Continental

Case 97-003S
21 MPH CRASH - FATALITY

• Driver
• 27 Y/O Male
• 69” Tall; 164 Lbs
• 11 O’clock
• 19” Max Crush
• Injuries:
 AIS-6 Aorta
 No Serious Rib Fx

Case Vehicle - 1985 Nissan Sentra
Bullet Vehicle- 1987 Dodge Caravan

Case 97-024S
Significance of AIS 4+ Aortic Injury

- Occur in low severity near-side crashes
- Frequently occult (no physiological cues)
- Frequently fatal
- Usually complete recovery when successfully treated
Significance of AIS 4+ Aortic Injury

- **NASS**
 - 2964 per year
 - 26% in near-side crashes
 - Most frequent AIS 6
 - 88% Fatal

- **WLIRC**
 - 12 Cases per year
 - 85% Fatal in near-side
 - 50% Alive on-scene - potentially survivable
Outline

1. Why Did We Study Aortic Injuries
2. Approach to the Study
3. Selected Results to Date
4. Continuing Aortic Injury Research
5. Findings & Recommendations for Future Research
WLIRC/GW Aortic Injury Research

Individual CIREN Cases ➔ Documented Crashes & Injuries ➔ Studies of Aortic Injuries

![Vehicle crash scene and medical images of aortic injury](image-url)
WLIRC/GW
Aortic Injury Research

CIREN + NASS Data

Individual CIREN Cases

CIREN + NASS Data

Documented Crashes & Injuries

Studies of Aortic Injuries

Regression Analysis

Regression Analysis

Regression Variables

Regression Variables

Injury Patterns Crash Patterns

Simulation Conditions

Computer Reconstruction
- Vehicle Dynamic Model
- Vehicle FEM Model
- Occupant Model
- Human Aorta Model

Critical Crash Conditions
Injury Mechanisms & Criteria
Test Conditions & Countermeasures

Vehicle Crash Tests

Cadaver Tests

Model Validation and Assessment

Regression Variables

Cadmaver Tests
Computer Modeling

Typical Crashes with Aortic Injury

Crash Reconstruction - Vehicle Dynamics Model (HVE)

Crash Direction & Pulse

Vehicle Structural Model (Neon FEM)

Intrusion and Acceleration Environment

Occupant Model (MADYMO)

Occupant Response & Injury Measures

Human Organ Model – (Chest/Aorta FEM)

Injury Measures vs. Critical Strain
1. Why Did We Study Aortic Injuries
2. Approach to the Study
3. Selected Results to Date
4. Continuing Aortic Criteria Research
5. Findings & Recommendations for Future Research
Results of CIREN Case Analysis

Significant Variables in Near Side Crashes:
- Intrusion
- Age
- Y Damage Pattern

Typical Vehicle Damage Y Damage Location
Data for Regression Analysis

- WLIRC + CIREN + NASS-CDS 1997-2000
- Front seat occupants only
- Case occupant sitting on the struck side of the vehicle
- Vehicle was struck by another vehicle, not a fixed object

- 679 total occupants
- 58 occupants with aortic injury
Results of Regression Analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Odds Ratio</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1.036</td>
<td>≤0.01</td>
</tr>
<tr>
<td>Delta-v</td>
<td>1.079</td>
<td>0.05</td>
</tr>
<tr>
<td>Intrusion</td>
<td>1.069</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>Y Damage Location</td>
<td>2.352</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Results of Crash Reconstruction
HVE Model

- Determined Crash Pulse & Direction for Y-damage
- Velocity of Struck Vehicle Not a Predominate Factor
- Simulation of Stationary Struck Vehicle is OK
The Next Step:

• Compare 214 (or SNCAP) Test with Y-damage Crash
Crash Reconstruction

Neon FEM Model

214/SINCAP

Y-Damage

Purpose: Determine Differences in Acceleration and Intrusion Time History
Door Intrusion from FEM Model
Front View

214/SINCAP

Y-Damage
For Y-damage:
- Intrusion starts in the front part of the door
- Intrusion is more uniform along the height of the door
MADYMO Human Model Response
Y-Damage Pattern

- Thorax is impacted by a force component from the front
- Head z acceleration increased – more spinal stretching
Outline

1. Why Did We Study Aortic Injuries
2. Approach to the Study
3. Selected Results to Date
4. Continuing Aortic Injury Research
5. Findings & Recommendations for Future Research
Y-Damage Crash Test

Conducted May 8, 2003
By GW University, NCAC
At FHWA Test Facility
McLean Va.
Y- Damage Test

Chevy S-10 Pickup into Ford Taurus at 30 mph
Y Damage Crash and Test

Real Crash With Aortic Injury

Y- Damage Crash Test
Door Intrsion Measurements by String Pots
Door Intrusion vs. Time

-250 -200 -150 -100 -50 0 50

Intrusion, mm.

-0.03 0.05 0.13 0.21 0.29 0.37 0.44 0.52 0.60 0.68 0.76 0.84 0.92

Time, Seconds

Pot 18 Top Rear Door
Pot 19 Top Middle Door
Pot 20 Top Front
Pot 21 Bottom Front Door
Pot 22 Bottom B-Pillar
Door Intrusion vs. Time

Intrusion, mm.

Pot 18 Top Rear Door
Pot 19 Top Middle Door
Pot 20 Top Front
Pot 21 Bottom Front Door
Pot 22 Bottom B-Pillar

Static Intrusion
Test Results – Y Damage Crash

• Static and dynamic displacement determined
• Time history of door displacement available for model validation
• Model predictions of door displacement confirmed
Outline

1. Why Did We Study Aortic Injuries
2. Approach to the Study
3. Selected Results to Date
4. Continuing Injury Criteria Research
5. Findings and Recommendations for Future Research
Summary of Findings - Triage

• Predictors of aortic injury in all near-side crashes include
 – age,
 – delta-v
 – greater than 6” of door intrusion

• For non-catastrophic crashes:
 – damage beginning forward of the A-pillar
 and extending into the occupant compartment
 – 2.4 times more likely to result in aortic tear
Summary of Findings - Critical Test Conditions

- **Y-damage** most likely to produce injury
- Loading of the thorax that produces **longitudinal** components in addition to **lateral** may contribute to aortic injury
- Y-Damage results in **higher axial head acceleration** indicating higher spinal stretching
- **Intrusion timing** is later than in SINCAP
NHTSA’s current side impact regulation and testing program may not address the issue of aortic injury

- 214 crash configuration produces less lateral and longitudinal loading to the chest than Y-damage crash
- Current side impact dummies unable to measure multidirectional chest compression
Summary of Findings – Injury Criteria

- Based on limited cadaver tests, V^*C was best injury criteria.
- Conditions that produced aortic injury in cadavers unclear.
- Injury criteria needs to be verified by FEM modeling.
Future Work – Wayne State Model of Aorta

- Examine effects of near-side crash characteristics on loading locally at the aorta
The Next Steps

• Validate Wayne State aortic model
• Validate FEM & MADYMO Models for Y-damage
• Apply above to reconstruct crashes with aortic injuries
• Compare critical aorta stress with dummy injury measures
• Recommend critical tests and injury criteria