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PREFACE

This report incorporates the work done in a number of different efforts

to improve the Articulated Total Body (Ats) Model's capability to

simulate human body biomechanics in various dynamic environments,

especially aircraft ejection with windb1ast exposure.

The majority of modifications to the model fall into six categories:

wind force option

joint drift correction

edge effect option

multi-axis angular displacement

vehicle motion prescription

slip joint option

hypere11ipsoid option

These improvements have been combined to form the ATB-IV version on the

Armstrong Aerospace Medical Research Laboratory's (AAMRL) Concurrent

computer system at Wright Patterson Air Force Base. AAKRL, Systems

Research Laboratories Inc., J &J Technologies Inc., and the National

Highway Traffic Safety Administration have all contributed to the

technical work described herein.
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1.0 lNTROOO CTlON

The Articulated Total Body (ATB) Model is used at the Armstrong

Aerospace Medical Research Laboratory (AAHBL) for predicting gross human

body response in various dynamic environments, especially aircraft

ejection with windblast exposure. Aerodynamic force application and a

harness belt capability were added to the Crash Victim Simulation (CVS)

Program (Ref. I), by Calspan Corporation in 1975 for AMRL (Ref 2.), and

the resulting program became known as the ATB model. In 1980, Calspan

made a number of modifications to the ATB model combining it with the

then current 3-D Crash Victim Simulation program to form the ATB-II

model (Ref. 3). Complete documentation of the program through the

ATB-II version was performed by Calspan Corp. (Ref. 4). A new v~rsion,

ATB-III, was generated which included the improvements made by· J & J

Technologies Inc to model the body response to windblast for AMRL (Ref.

5).

A number of additional efforts have been made to improve various aspects

of the ATB-III model, with emphasis on its capability to simulate

aircraft ejection with windblast exposure as well as complex automobile

accidents.

This volume, Modifications, contains a description of the major changes

made to create ATB-IV and the theory used to develop them.

Section Two of this volume includes a new wind force option allowing

segment contact ellipsoids to block the wind as well as other

aerodynamic force improvements. Corrections to prevent angular drift in

the joints are described in Section Three. The edge effect option in

Section Four ensures that a contact of a plane with an ellipsoid will

not be ignored and that a smaller force will be applied when only part

of the contact area is within the plane boundaries. Section Five

contains an improvement allowing the prescription of multi-axis angular

displacements to describe the vehicle motion. A new option allowing a

1



joint to slide along an axis is explained in Section Six. Section Seven

contains a new hyperellipsoid option. A summary of other modifications

that form the ATB-IV version is included in Section Eight.

These changes have been made so that previous input decks are valid with

changes required only in the H cards. The updated input description

outlining any changes needed and describing the use of the new options

is described in Volume 2, the Userls Guide. Sample input decks using

the new options and the resulting output are also included in Volume 2,

along with an updated list of numbered stops. Volume 3, the

PrograMmerls Guide, contains the listing of the updated ATB-IV program.
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2.0 AERODYNAMIC FORCES

The aerodynamic routines added to the model in 1975 (Ref. 2) have

some limitations which make simulating wind forces difficult. For

example the aerodynamic pressure is prescribed tabularly as a function

of time, but this requires knowing the velocity profile of the seat

before a simulation is made. Since the seat's motion may depend on the

wind forces, estimation or trial and error has to be used in defining

the aerodynamic pressure.

Also the aerodynamic forces are applied to the entire projected

contact ellipsoid area that has penetrated the wind plane even if the

ellipsoid is partially or fully blocked by another ellipsoid. ]his

causes a disproportionate amount of force to be applied in many cases.

This is especially significant for the torso segments where the

ellipsoids substantivally overlap. More than 30 percent of three torso

segment's combined area is within another ellipsoid, resulting in the

aerodynamic force on these segments being much too large.

The original aerodynamic forces are applied to any segment by

specifying an aerodynamic pressure, a boundary plane, and a contact

ellipsoid associated with the segment. When the ellipsoid penetrates

the boundary plane, the wetted area is estimated and a pressure from the

tabular data, defining the time dependent aerodynamic pressure, is used

to calculate the force and torque that is applied to the segment.

Three changes have been made to the routines to allow more

flexibility in applying aerodynamic forces.

1. The aerodynamic pressure can be a function of a

segment's velocity.

2. A time dependent drag coefficient can be included in

calculating the wind force.

3



3. An additional method of calculating the wetted area,

that allows segments to be defined which block the ellipsoid

from the wind, has been added as an option.

2.1. VELOCITY DEPENDENT PRESSURE

To allow for a velocity dependent aerodynamic pressure, subroutine

KINPUT is altered to read in E.6 cards that contain the specific heat

ratio, the speed of sound, and the absolute pressure for the altitude

which the simulation is to represent along with the definitions of two

segments. The aerodynamic pressure will depend on the velocity of the

first segment with respect to the second segment.

The aerodynamic pressure, FT, used in WINDY to determine the aerodynamic

forces, is calculated from the definition of dynamic pressure:

where k is the ratio of specific heats

c is the speed of sound

Pa is the absolute pressure

Vis the velocity of the first segment with respect

to the reference segment

Note that it is a pressure and is multiplied by a wetted area in

subroutine WINDY to determine the wind force applied to a segment. FT
can be defined as tUBe dependent using the same input cards a8 before,

or as velocity dependent by specifying a specific heat ratio. How FT is

applied to a ses-ent in subroutine WINDY, has no functional dependence

on the method used to define if.

4



2.2 DRAG COEFFICIENT

Time dependent drag coefficient functions can be defined as wind force

functions on the E.6 cards. They follow the same format as the time

dependent wind force functions, although the drag coefficient is a

scalar quantity rather than a vector. Before the aerodynamic pressure

is used in WINDY, it is multiplied by the drag coefficient, CD.

This can be used to simulate the effects of the drogue chute opening or

other events that effect the drag. If there is no drag coefficient

defined, the default value is 1.0.

2.3 BLOCKED WIND

To allow for blocking of the wind. a second method of applying the wind

force has been added to subroutine WINDY. This involves projecting the

ellipsoid. to which the aerodynamic force is being applied. as an

ellipse to define the wetted area. Then this ellipse is divided into

incremental areas. whose center points are checked for penetration of

the wind plane and for blockage by other segments. Each area that

passes these tests has the wind force applied at its center point. This

allows for overlapping and connected segments. Since this new grid

method can increase run time significantly, the original method can

still be used for any or all of the segments to which a wind force is

being applied, without any changes to previous input decks.

Subroutine WINDY contains the major changes that incorporate this

new method for applying the aerodynamic forces. Much of the analysis

needed for this method is based on the derivations developed for the

VIEW program (Ref. 6). In WINDY. after checking if there is any

penetration of the segment through the wind plane. and getting the wind

pressure from the wind force functions, the program chooses a method for

5



the wind force calculations depending on the input. The original method

uses a calculated area of the ellipsoid, while the new method allow. for

blocking of the wind by other segments, by using a grid to determine the

area.

2.3.1 Project Ellipsoid

For the grid method, the first step is to set up a coordinate

system associated with the wind. This viewpoint coordinate system is

located at an assumed origin of the wind with it's z-axis directed

towards the origin of the inertial coordinate system.

Define,

FT as the wind force vector (inertial coord.)

VP as the origin of the viewpoint coordinate system

(inertial coord.), which is set equal to -looooff.

DVP as the direction cosine matrix for transformation of

vector components from the inertial to the viewpoint coordinate

system.

Th~ R!l transformation is chosen such that the X-axis of the viewpoint

coordinate system is parallel to the X-Y plane of the inertial

coordinate system. DVP can be calculated as follows:

Let

tt· ", 1"1 ' which is the unit wind force vector

form

XNOiH • ,tftl2 + ft22, which is the projected length of tt

on the X-Y plane.

6



Let

~ A

ZVp • ft

then it can be shown that

A ~ .,.

XV p • (ft21 ftlJ)/XNORH, is a unit vector normal to
A
Zvp and parallel to the X-Y plane of the inertial

coordinate system.

The third unit vector can then be obtained using the vector product

The transformation matrix is then formed by placing these unit vectors

in row form

-ftl/XNORM

ft2ftJ/XNORM

ft2

The contact ellipsoid is projected onto a plane parallel to the X-Y

plane of the viewpoint coordinate system. Since the viewpoint is far

away from the ellipsoid and the Z-axis is nearly directed at the

ellipsoid. the projection is assumed to be elliptical. To solve for an

ellipse matrix, three radial vectors of the ellipsoid, pointing to a

surface point that forms the contour of the projected shadow, must be

determined. !R(7-l5,M) is the matrix that defines the surface points of

ellipsoid M with respect to its principal axes. First, this ellipsoid

matrix, ~(7-l5,M). is transformed to the viewpoint coordinate system

and designated as ~(J,J). This is accomplished by:

where Q is the direction cosine matrix that transforms

from the inertial to the ellipsoid principal coordinate system.

7



In order to define the projected ellipse, three vectors are chosen which

lie respectively in the X-Z plane, the Y-Z plane, and the (X-Y)-Z plane

of a coordinate system parallel to the viewpoint system but with its

origin at the ellipsoid center. These vectors are shown in Fig. 1, and

have components

with R3X .. R3Y

As seen in Fig. 1 the associated vector PI from the viewpoint to the tip

of Rl is normal to the no~al vector 01 for the point defined by Rl on

the ellipsoid. Therefore,

1) & 2)

Combining equations I and 2,

3)

Also from the figure,

4)

Substituting in eq. 3 for PI from eq. 4,

5)

i Tl ~ Rl • 1 from the definition of an ellipsoid. 6)

then,

7)

8
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Subroutine SOLVR solves this equation for the components of RI. The

same procedure is used to solve for the other components of 12 and R3.

To solve for i 1• i 2• and R3. we will respectively treat these as Case

No.1. Case No.2, and Case No.3.

For all three cases expanding eq. 7

AMll AMI 2 AM13

or

(SMX, SMy, 8Mz) AM2l AM22 AM23 R• -1

(8MXAM11 + SHyAM21 + SMzAM31. SMXAM12 + SHyAM22 + 8MzAM32.

SMXAM13 + SHyAM23 + SMzAM33) R • -1

This can be further reduced to

(A1SMX + A2SHy + A3SMz) RXorY + (A4SMX + A5SMy + A6SMz) RZ • -1

where

Case No. 1 Case No. 2 ~se No. 3

Al • AMU AI • AM12 Al • AMU + AM12

A2 • AM2l A2 • AM22 A2 • AM2l + AM22

A3 • AM3l A3 • AM32 A3 • AM3l + AM32

10



A4 J:I AM13

for all cases

A6 .. AM))

Making the further substitutious;

B .. AlSMX + A2SMy + A3S~

D ... A4SMX + A5SMy + A6S~

we get

B RXorY + D RZ = -1.

Solving for RXorY

RXorY'" -(D/B)Rz -(lIB).

Now the Rvectors can be written

f
(D/B)RZ -lIB]

13 II: (D/B)Rz -lIB

RZ

11

( 8)



Substituting i into eq. 6 and expanding.

A7 RXory2 + 2 A8 RXorY RZ + A6 RZ2 • 1

where

( 9)

Case No.1

A6 - AM33

A7 ... AMa

Case No.2

A6 • AM33

A7 ... AM22

A8 .. AH23

Case No.3

A6 D AM33

A7 ... AM11 + 2AM12 + AM22

A8 .. AM13 + AM23

Substituting eq. 8 into eq. 9.

A7[-(D/B)RZ - 1/B]2 + 2A8RZ[-(D/B)RZ-1/B] + A6RZ2 ... 1

Expanding and combining like terms.

[A7(D/B)2+A6-2A8(D/B]RZ2 + [2A7(D/B2)-2A8(1/B)]RZ + A7/B2_1 = 0

Therefore.

RZ· . -T2 ± ~T22 - 4T1T3 and RXorY • -(D/B)RZ - l/B

2T1

where

T1 = A7(D/B)2 + A6 -2A8(D/B)

T2 • 2A7(D/B2) - 2A8(1/B)

T3 • A7(1/B2) - 1.

12



WINDY calls subroutine SOLVR which requires as input variables the

values of AI, A2, A3, A4, A5, A6, A7, AS, and 8M for each case.

Subroutine SOLVi returns corresponding values for RXorY and RZ. The

three Rvectors obtained satisfy the three dimensional ellipsoid, and

lie in the appropriate planes.

These i vectors are then projected as if the viewpoint was an

infinite distance away. Therefore, the X and Y components of i are the

two-dimensional projected vectors, ii.

R2X = RX R2y .. Ry

The equation for the ellipse is,

R2T a! R2 ;; I where
AS12]
AS22

Since there are three R2 vectors and three independent components of ~

AS can be obtained by solving three equations simultaneously which is

done in subroutine SOLVA.

2.3.2 Set-up Grid Pattern

To set up the grid pattern for the ellipse, the major and minor

axis vectors are needed. These vectors are found by solving for the

eigenvalues of the ellipse matrix, ~ by imposing the condition

AS R" AR.

This condition is true only for vectors that represent the major and

minor axes of the ellipse.

[

RX] [A RX]

Ry .. ARy .

13



Or,

II: 0

Therefore,

A ... ASH + AS22 .:!: j(ASH + AS22)2 - 4 (ASH AS22 -A122)1/2

2

With the eigen vectors,

(10)

::

::

_1[ AS12 ] [ RX]
..;-;:; A1 -ASll ... &y

_1[A 2 -
AS

22] ... [RX]
;-;:; AS12 Ry

( 11)

These are the major and minor axes vectors of the ellipse.

2.3.3 Three Checks

With the major and minor axes of the ellipse found, a grid is laid

over the projected ellipse (Fig. 2) and each corner point of the grid is

checked to see if it is in the ellipse, through the wind plane or not

behind a blocking segment. If all are true, then a wind force is

applied to the incremental area (AREA) shown shaded in Fig. 2.

14
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vp

Major Axis

Figure 2 Grid Overlay

Corner Points

2.3.3.1.Check if Cg;ner P9ip~ 16 Within frojected !!!ipsi' 1M is the

two dimensional vector to a corner point. If 1M! Ai m~ 1, then BR is

within the ellipse.

Projected
Ellipu

Figure 3 Three Dimensional Location of iN
15
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lor the next two checks, the three dimen8ion~1 location of 1M on

the ellipaoid is needed. See Eig. 3. The Z camponeut of the three

dtmensional vector, 1M, is found by solvini the ellipsoid equation,

~ ..
~ I~

AH12 AM22 AM23 JU1y • 1

AM13 AH23 AM33

Expanding anG solving for RMZ

lUlz • -™2': ..lr.'M22 -4tMl TM3

2TM1

where

1M2 .. 2 (RMX AM13 ... lUly AM23)

and SNi is the vector from the viewpoint to 1M on the ellipeoid's

surface $nd is given by

with $11 vectors expressed in the viewpOint coordinate system.

2.3.3~f. Check if iM *s Penet~j~iP8 Wipd l1,ne. Irom Pig. 4 defiue

PL - normal unit vector to wind plane (in the segment coordinates

to which plane i8 attached)

16
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PL4 - nearest distance from plane sesment origin to plane

XMH - vector from plane segment origin to tip of iH (in the

segment to which plane is attached)

BTS - component of XMM along PL

i\

BTS • Xiii . PL

If BTS > PL4 then RM is penetrating wind plane.

Wind Plane Segment
Coordinate System

Figure 4 Ellipsoid/Plane Penetration

)
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2.3.3.3 Check that iN Is Not Blocked~_~~he-!!2ckjng Segments.

First, the ellipsoid matrices for the segments that may be blocking the

wind must be transfonBed to the viewpoint coordinate system. This is

done using

Ali • DVP' D· T BD' D' DVP' T-1 ~ =-1. ~-1

Also Sli is defined as the location of the i-th blocking segment in the

viewpoint coordinate systeR (Fig. 5).

(X,Y)

Blocking Segment

~
vp

Line of
Sight

Figure 5 Check For Blocked Wind

A line of sight is defined a8 a line normal to the viewpoint X-Y

plane through the tip of ii, and is used to determine if the wind hits

the blocking segment before reaching iK (Fig. 5). The two-dimensional

vector, (X, Y), from the center of the blocking ellipsoid to the line of

sight is used in defining the point where the line of sight enters the

blocking ellipaoid.

18



X a SNIX - SIX

y .. SNly - Sly

The Z component of the entry point, Bl, is calculated in the same manner

as RHZ earlier,

X

(X, y, Bl)

AI33

y ... 1

Bl

(12)

If the line of sight does not pass through the blocking segment, B1 in

equation 12 is a complex number. The entry point could be beyond 1M,
therefore, the distances from the X-Y plane of the viewpoint coordinate

system are compared. If SN1Z < SIZ + Bl, then iii is not blocked.

Each of the possible blocking segments are checked using this

method. If each of these checks are true, then a wind force is applied

to the incremental area at iK. Each corner point is handled the same

way and the forces are totaled and added to the Ul and U2 arrays.

2.4. CHANGES TO 'DIE PROGRAM

A new H card is now needed for the wind forces to be output as

tabular time histories. The wind force applied to any segment can be

output to the tabular time histories in any reference system.

This addition requires changing common block RSAVE to:

COMMON/RSAVE/ XSG(3,20,3), DPMI(3,3,30), LPMI(30), NSG(9),

MSG(20,9), MOG, MOGIN(2S,S), KREF(9)

The size of NSG, MSG, and KREF are increased to allow for the

additional set of tabular time histories.
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Besides RSAVE, the other changes require common block WINDFR to be

modified to:

COMHON/WINDFR/WTIME(30),QFU(3,5),QFV(3,S),WF(3,30),IWIND(30),

MWSEG(7,30),NFVSEG(6),NFVNT(S),MOWSEG(30,30)

The size of MWSEG is increased to include the drag coefficient

function number and the number of possible blocking segments.

New variables that are added to the COMMON block are:

WF(3, 30) Wind force vectors applied to segments

(in local reference),

MOWSEG(30, 30)

MOWSEG(2I-l, J)

MOWSEG(2I, J)

Segment identification number of I-th

segment that can block segment J,

Contact ellipsoid associated with the

MOWSEG (2I-l,J) segment.

In addition to the common block changes, coding changes affected a

n~ber of subroutines. Subroutines WINDY and KINPUT contain the

majo~ity of these changes and SOLVA and SOLVR are new subroutines. In

Volume 3 of this report, the listing of the ATB-IV code has the labels,

WINDOP or WINDROT, in column 73, of all the new or changed lines needed

for these wind force options.

To use the velocity dependent pressure. drag coefficient, or blocked

wind the input deck has to be modified. The input description for

AIl-IV is in Volume 2 of this report and describes these modifications.

Note: Previous At! or CVS input decks require a blank card to be

inserted for H.8.
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3.0 ANGULAR DRIFT CORRECTION

The locked axes of the joints in the ATB Model often drift from their

original position because of inherent inaccuracies due to the numerical

integration process. The CHAIN subroutine was written to correct for

these errors after each integration step, but the drift of the locked

axes still occurred, especially during long simul~tions. The code

modifications described here correct this drift and the sudden shifts in

the joint azimuth angles.

3.1 TECHNICAL DISCUSSION

The ATB Model has four types of joints, they are:

1) Ball and Socket Joint,

2) Pin or Hinge Joint,

3) Euler Joint, and

4) Null Joint.

The Ball and Socket Joint and the Pin Joint may be locked. The

Model will unlock these joints when a specified torque is exceeded. The

Euler Joint has three axes which may be locked or unlocked independently

thus providing eight states for the joint. The Null Joint is used to

provide the option of disjoining sets of segMents.

In the ATB Model constraints are imposed on the joints by computing

a constraining torque. The basic equations are:

(13a)

(13b)

where 11 are inertia matrices of the adjoining

segments,

are the angular accelerations,
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121 ' J!2 are direction cosine matrices,

is a projection matrix which depends on

the type of constraint, and

is the constraint torque.

The constraint equation (which is needed to solve for q) can be best

derived by considering the case of a Pin Joint. In this joint the

constraint is that the pin vector in one segment must coincide with the

pin vector in the adjoining segment. The pin vector defines the free

axis of the joint (the Pin Joint has only one free axis). The equation

is:

(14)

where

and

ii

are the pin vectors (lx3 matrices)

in the respective segments. These

vectors are constant in the

segments.

Is the instantaneous pin vector in

inertial reference,

are the transposes (inverses) of the

direction cosine matrices.

Differentiating equation (14) yields an equation in the velocities wl

and w2 thus:

(15)

."
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Differentiating equation (15) yields an equation in the acceleration,

thus:

Equation (16) is the desired constraint equation for the accelerations,

however it is only of rank 2 and we need an equation of rank 3 to solve

for the torque. This is obtained by observing that the constraint

torque can have no component on the pin axis, i.e.

-T-h q I: 0 (17)

Equations (16) and (17) can be combined into a single matrix equation of

rank 3 by crossing equation (16) with b and adding the term hbTq. The

resulting equation can be put in the form:

(8)

The projection matrix l is given by

g I: 1 - h ht where I is the identity matrix.

Equations (13) and equation (18) are the basic equationsused in the

ATB Model to form the system equations which are solved for the

constraint forces and torques and for the linear and angular

accelerations.

Details on the form of equation (18) for a locked joint and for an

Euler Joint are given in Volume 1 of Reference (4). The only

differences are the form of the projection matrix l and the right hand
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side of equation (18).

identity matrix and the

vector (113 matrix).

In particular for a locked joint g is the

right hand side of equation (18) is the zero

3.2 CORRECTION or mE D1UrT PROBLEM

The problem with drift arises since the constraints are imposed on

the acceleration (equation (18» and the values of angular velocity

(w's) and angular position (~'s) are obtained by numerical integration.

Errors can arise because of errors in the solution of the &ystem

equations and errors due to the numerical integration process. Errors

of this nature are unavoidable because of the finite precision

calculation on a digital computer. Thus we may find that equation (14)

and equation (15) are not satisfied to some desired degree of precision

at some point in the solution process. To correct this, Subroutine

CHAIN was modified.

Consider the following equations:

"If the vector u is zero then h2 and hI are aligned. If n is not

zero it is perpendicular to the pin vectors hI and h2 and has a

magnitude which is the sine of the angle between the pin vectors. This

vector is used to define the rotation operator that is applied to

sesment 2's direction cosine matrix aligning the hI and h2 vectors.

• [ cl + uuT/(l + c) - (n x)]»2

where c is the cosine of the angle between the pin vectors,

and (rr x) is the matrix analogous to a vector cross product

operation.
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The velocity vector is also modified;

(20)

Subroutine CHAIN (at the option of the user) modifies the direction

cosine matrices ~ and the angular velocities was specified in equations

(19) and (20). This insures that the angular position constraint

(equation (14» and the angular velocity constraint (equation 15) are

satisfied for pin joints.

3.3 CORRECTIONS TO '!'HE PROBLEM

The ATB model was studied in detail to determine why the above

procedure was not functioning properly. Two errors were found, they

are:

1. The right hand side of equation (12), which is

computed by Subroutine SETUP1, was being computed

before the direction cosine matrices were modified.

2. Incorrect h vectors were used in Subroutine CHAIN

for an Euler Joint in states 4, 5, or 6.

Error 1 was corrected by calling Subroutine CHAIN before calling

Subroutine SETUPI in Subroutine DAD X, and error 2 was corrected by

correctly defining the h vectors. Also the code to correct for drift

was removed from subroutine CHAIN and put into a new subroutine called

DRIFT. This required that the dimensions of the BIR array and the CONST

array, which are in COHMON/CEVLER/, be changed. The new arrays are

BIR(3,3.90) and CONST(5,30). This change was made in all the routines

that included this COMMON.

Subroutines EJOINT. INITIAL, and UPDATE were modified to store the

variables needed for the new drift routine.
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Listings of the new DRIFT subroutines and of the changed

subroutines are in Volume 3 of this report. New or changed lines are

labeled with JDRIFT starting in column 73.
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4.0 EDGE EFFECT OPTION

In the past, problems often developed in ATB simulations when an

ellipsoid came in contact with a plane near the plane's edge. If part

of the ellipsoid contacted the plane edge but the center, of the

cross-sectional ellipse, containing the area cut by the plane, did not

lie within the plane boundaries, then no force was applied as if no

contact had occurred at all. However, as soon as this center moved

within the boundaries of the plane, a full contact force was applied.

The planes had to be adjusted and modified frequently to avoid

instantaneous jumps in force when contact occurred at object corners.

These new routines have been developed to solve this edge effect

problem. In particular, use of the new edge effect option insures that

a contact of a plane with an ellipsoid will not be ignored and that a

smaller force will be applied when only part of the contact area is

within the plane boundaries. Also an option was added allowing a force

to be applied when the ellipsoid has completely penetrated the plane, if

the edge effect option is not used. Another alternative for improving

contact force calculations is to use a hyperellipsoid to describe the

surface. This option is described in Section Seven.

4.1 NEW SUBROUTINES

4.1.1 Subrputine PLELP

Subroutine PLELP computes the point of maximum penetration of an

ellipsoid associated with segment m intersecting a plane associated with

segment n. Previously the point of maximum penetration was projected

onto the plane. If this projection fell outside of the boundaries of

the plane, the contact was ignored. A five way option has been added to

the routine. The choice is made by the user by inputting an additional

integer on the F.l.B - i.I.N cards. This integer is stored in the

twenty third location of the TAB array associated with the contact. The

options are:
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TAB(NT+22) > 0, call new edge effect routine PLEDG, no

force is computed for complete penetration,

• 0, use standard finite plane test, no force is

computed for complete penetration,

• -1, treat plane as infinite (bypass

edge test), no force is computed for complete

penetration,

• -2, treat plane as infinite (bypass edge test), a

force is computed for complete penetration,

< -2, use standard finite plane test, a force 18

computed for complete penetration.

Equations used in PLELP.

Let: (Fig. 6)

Im location of the reference point of segment m,

(inertial system)

Zn location of the reference point of segment n,

<inertial system)

Om offset of the ellipsoid, <inertial system)

Pi first reference point for the plane, <inertial

system)..
T unit exterior normal of the plane,

A ellipsoid matrix.

Then the equations are:

vector from Pi to center of

ellipsoid.
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Figur~ 6 Plane - Ellipsoid Contact
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bet = - TTinc , distance from plane to center of

ellipsoid (positive if center of

ellipsoid has penetrated the plane).

bte = -sqrt(TT i-I T), the component, normal to the plane,

of the vector from the point of

maximum penetration to the ellipsoid

center.

,.
T I bte , vector from center of ellipsoid to

point of maximum penetration. If

the edge routine is used this vector

is computed by PLEDG as the location

of the centroid of the common area of

intersection.

p = bet - bte ,penetration. If the edge routine is

used, the penetration is computed by

PLEDG as the point on the ellipsoid

below (along the -normal to the plane)

the centroid.

amr a 1 - (bet/bte)2, parameter used to determine

if intersection has occurred

(See Subroutine PLEDG).

Note that if amr is negative the ellipsoid doesn't intersect the

plane. If amr is zero the ellipsoid is tangent to the plane. The

current logic in Subroutine PLELP ignores the contact unless amr is,
greater than zero. This has the effect of dropping the contact once the

ellipsoid has fully pe~etrated the plane.

Rlm • ~ + ~ , location of the point of maximum

penetration relative to the

reference point of segment m.
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RIn ~ ~ + ~ + Im - In' location of the point of

maximum penetration

relative to the reference

point of segment n.

4.1.2 Subroutine PLEDG

If the ellipsoid intersects the plane, the figure of intersection

will be an ellipse. Subroutine PLEDG is used to determine if this

ellipse has any common area with the finite plane.

Z D aU + bV is a point in the plane where

U, V are the vectors defining the boundary of the

finite plane, and (U • Pi - Pi, V .. P3 - Pi,
where Pi, Pi, P3 are the vectors defining the plane),

and

a, b are scalars. Let

W• (bet/bte)Rm, be the vector from the center of the

ellipsoid to the center of the cross­

sectional ellipse.

dl' d2 is location of the center of the ellipse from

the reference point Pi in U, Vcoordinates.

Then, the equation of the ellipse is

(z - w) T A (z - W) .. 1.

This may be written as
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(Note: p 2 is the same as amr in FLELP).

The extreme values of a and b for the ellipse are:

(Fig. 7)

aa2 • sqrt (e22 p 2/delt> , largest value of a,

aal = - aa2 , smallest value of a,

bal -ba2' value of b at aal'

bb2 = sqrt (ell P 2/delt> , largest value of b,

bbl = -bb2' smallest value of b,

abl = -ab2 , value of a at bbl'

where

(a
f

,b i )mn m n
(a f ,b i )pn m n

Figure 7 Extreme Values of Ellipse

32



Computation of the intersection of the ellipse and the finite plane (a

parallelogram) is performed as follows:

Define

If Smin is greater or equal to Smax' the ellipse has no common area

with the finite plane. (It lies entirely to the right of the finite

plane or entirely to the left.)

Define

If bmin is greater

with the finite plane.

entirely below.)

or equal to bmax' the ellipse has no common area

(It lies entirely above the finit~ plane or

If bmin is greater than bbl' the lower boundary of the plane

intersects the ellipse. The corresponding values of a may be calculated

from the ellipse equation 21 as

Similarily if bmax is less than bb2' the corresponding values

of a are
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Figure 8 Common Area Boundaries

Feferring to Figure 8, the most general intersection of the plane

and the ellipse consists of three sections comprising an upper boundary

and three sections comprising a lower boundary. The computation of the

area and the centroid is done in subroutine PLREA using the abscissa, a,

as the independent variable. The abscissa of the sections are

determined as follows:

,
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Section

I left upper arc of ellipse:

initially Sml ~ Sm2 ~ Smin. then

if bmax > bal' and bmin > bal'

Sml ~ max(afmn' Smin)

II upper straight line boundary:

III right upper arc of ellipse:

initially axl ~ ax2 = Smax' then

if bmax > ba2' and bmin > ba2'

ax2 = min (afpn' Smax)

I' left lower arc of ellipse:

initially bml ~ bm2 = Smin. then

if bmin < bal'

if bmin < bal' and bmax < bal'

bml = max(afmx, Smin)

3S



II' lower straight line boundary:

III' right lower arc of ellipse:

initially bxl = bx2 = &max. then

if bmin < ba2. aild bmax < ba2'

bx2 = min(afpx. &max)

With the above logic, if the lower abscissa of any section is

greater than or equal to the upper limit the section does not exist. If

no section of the upper boundary exists then there is no common area and

the routine exits.

If it is determined that a common area exists. subroutine PLREA is

called to compute the centroid of the cammon area •

..Next, the vector fran the center of the ellipsoid to the centroid

of the common area is computed as

ac ' bc are the abscissa and the ordinate of the

centroid and

W is the vector from the center of the

ellipsoid to the center of the ellipse
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Finally, the penetration parameter, p, is computed as the point on

the ellipsoid below the centroid. This is done by using the equation of

the ellipsoid

(Rm - p~)T~(Rm - pI) • I, where ~ is the no~al to the

plane.

This equation is a quadratic in the parameter p and may be readily

solved with the quadratic fo~ula. The penetration parameter p is the

positive solution of this quadratic equation.

4.1.3 Subroutine PLREA

This routine computes the common area and its centroid. .Since the

equation of the ellipse (equation 21) is a quadratic the integration can

be done in closed fo~. The abscissa is used as the independent

variable. For a given value of the abscissa, a, the ordinate, b, is

computed from equation 21 as

b c -ae12/e22 + sqrt(r/e22 - d(a/e22)2l, where (22)

r c p2 and d = delt, are already computed by PLEDG.

The area is computed by adding the area contributed by each ellipse

or straight line section. For the ellipse sections incremental areas

are obtained by integrating equation 22 for each arc:

For the straight line portions the incremental area is abo

The abscissa of the centroid is determined by summing the

contributions from each section and then dividing by the total area.

For the ellipse sections the contributions are determined by integrating

equation 22 times a:
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For the straight line portions the contribution is ba2/2.

Similarly the ordinate of the centroid is determined by summing the

contributions from each section and dividing by the area. The ellipse

contributions are equal to one half the integral of the square of

equation 22:

and the straight line contributions are ab2/2.

Where sin(t) D ag/h,

The routine combines these contributions to compute the centroid

and the area. The true area is the area computed by this routine times

the magnitude of the cross product of the Uand Vvectors. The true

area is not computed since it is not currently us~d.

4.2 MODIFICATION OF OtHER ROUTINES

In the development of the edge effect routine it was convenient to

have the vectors IT and V, which are the sides of the parallelogram of

the finite plane, available. Hence the dimension of the plane array in

COMMON/CRTSar/ was changed from 17 to 24. This change was made in all

routines that included this COMMON. The new format of the plane array

is given in the table belo~.
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subscript

1, 2, and 3

4

5, 6, and 7

8, 9, and 10

11

12

13, 14, and 15

16

17

18, 19, and 20

21, 22, and 23

24

Table 1

format of PL Array

Descriptiop

,.
unit exterior normal, T, to plane,

TTPi

Pl..
Up, unit vector perpendicular to side

Pi-Pi
upTPl
UpT(P2 -Pl)
'" .Vp, un1t vector perpendicular to side

P2 - Pi.
~pTPi

VpT(P3 - Pl)

Pi - Pi, U vector

P3 - Pi, V vector

not currently used

Pl, Pi and P3 are the points defOining the plane.

Subroutine ROTATE was modified to rotate the proper components of

the new PL array.

Subroutine FINPUT was modified to allow the input of the parameter

used to select the edge effect option in subroutine PLELP.

Subroutine EQUlLB was modified to use the new PLELP instead of

using a shortened version of the subroutine.

In making changes to PLELP, a number of improvements were developed

to sections of code that are in both PLELP and SEGSEG. Therefore,

SEGSEG was changed to incorporate these improvements.
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Listings of th~ changed subroutines and new PLEDG and PLREA are in

Volume 3. New or changed lines have EDGE in column 73.

To use this new option changes to the F.l cards are required. The

changes are described in the input description in Volume 2.
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5.0 HJLTI-AXIS ANGULAR VmiICLE DISPLACEMENT

ATB-II and subsequent versions of the ATB Model allow the user to input

a specified motion for predesignated segments. Thus input may be in the

form of positions, velocities or accelerations. However, position

information for angular orientation may be specified only for one axis,

i.e. yaw, pitch or roll. In order to remove this restriction it was

necessary to develop a technique that will allow general angular

orientation data to be used.

5.1 HAmEMATlCAL DEVELOPMENT

Given the yaw, pitch and roll angles of a body at specified points in

time:

Let TH(n) be the time at point n, where n ~ 1, N -
(these time points need not be equally spaced),

Al(n, l) be the yaw angle at point n,

Al(n,2) be the pitch angle at point n,

Al(n,3) be the roll angle at point n, and

N number of data sets.

The angular velocity Vmay be calculated from the quaternion product

v .. 2 q* q
and the angular acceleration from,

A Gl 2q* ~J2

where Vis a column matrix (3xl) with components V(i), i = 1,3

A is a column matrix (3xl) with components A(i), i .. 1,3

q is the quaternion representing the angular orientation,

q* is the conjugate of the quaternion q,

q is the time derivative of the quaternion q, and

q is the second time derivative of the quaternion q.
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The quaternion q may be represented as a column matrix with

components q(i), i • 1,4. It is convenient to consider the first

component q(l) as a scalar and the other three as a vector, i.e. a 3xl

matrix hence let

c ... q(l)

a ... a 3xl matrix with components q( U, i = 2,4 and let

e .. q(l)

;; c; a 3xl matrix with components q(U, i .. 2,4

e .. q(l)

v .. a 3xl matrix with components ij(i), i • 2,4

The quaternion q may be determined from the direction cosine matrix

representing the angular orientation of the body. The direction cosine

matrix is obtained from the yaw, pitch and roll angles.

where Il is the direction cosine matrix (3x3),

aT is the transpose of the matrix a,
(li x) is the matrix representing the cross product operation

and,

! is the identity matrix.

From the above equation one has

~T -~. 4 c ( u x) and

trace(~) • 3 c2 - UTO ... 4 c2 - 1 since c2 + uTn .. 1 .

Therefore Q(l) c

Q(2) u(l)

Q(3) • u(2)

Q(4) • u(3)

... 0.5 SQRT(D(l,l) + D(2,2) + D(3,3) + 1),

... (D(2,3) - D(3,2))/(4 c),

• (D(3,l) - D(l,3))/(4 c),

• (D(1,2) - D(2,l))/(4 c).
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It should be noted that the magnitude of the u(i) may be computed from

the formula u(i) • SQRT«D(i,i) + 1 - c2)/2). This may be used in the

special cases where c • O. The signs of the u(i) may be resolved by

examining the signs of the off diagonal terms of ~T + ~.

Assuming that these angles are continuous in time, c and u can be fitted

with the Spline Routine that is already part of the ATB Model. The

Spline Subroutine produces a set of functions SP(i,j,k) for a cubic

spline which preserves the given values of the quaternion:

SP(ld, k) EO TM(j) ,j .. l,N, k • 1,4

SP(2,j,k) .. q(j, k) ,j • l,N, k .. 1,4

SP(3,j,k) c: ql(i,k) ,j • 1,N, k c: 1,4

SP(4, j, k) c: q2(j,k) ,j .. l,N, k c: 1,4

SP(S,i,k) = q3(j,k) ,j .. l,N, k c: 1,4

where ql, q2 and q3 are the linear, quadratic and cubic terms determined

by the spline routine. These were determined such that the first and

second derivatives of the piecewise cubics are continuous at the

specified time points and the sum of the squares of the changes in the

third derivative at these points is minimized.

Using these spline functions as interpolating functions, values of the

quaternion terms may be determined at intermediate time points by the

formula

B(t,k) = SP(2,m,k) + X (SP(3,m,k) + X (SP(4,m,k) +
X SP(S,m,k»)

where B(t,k) is the interpolated value of quaternion term k at time t,

X .. t - SP(l,m,k) and m is selected such that,

X is positive or zero and t - SP(l,m,k+l) is negative.

The values of the time derivatives of q are estimated using the

derivative of the spline interpolating formula at each time point,
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q(k) = SP(3,k,3) + x (2.0SP(4,k,L) + 3.0 X SP(S,k,L)

q(k) = 2.0 SP(4,k,L) + 6.0 X SP(S,k,L)

The values of q, q, and q are then used in equations 23 and 24 to

calculate the angular velocity and acceleration at the specified time

points;

v = 2(cV - eu + vxu)

In detail:

vel) = 2 ( c v(l) - e u(l) + v(2) u(3) - vO) u(2) )

V(2) = 2 ( c v(2) - e u(2) + v(3) u(l) - v(l) u(3) )

V(3) "" 2 ( c v(3) - e u(3) + v(l) u(2) - v(2) u(l) )

AD 2(~ - eu +i x ii)

In detail

A(l) ... 2( c vel) · u(l) + v(2) u(3) - v(3) u(2»- e

A(2) = 2( c v(2) · u(2) + v(3) u(l) - vel) u(3»- e
A(3) D 2( c V(3) · u(3) + V(l) u(2) - v(2) u(l»- e

The angular acceleration is saved and used to prescribe the vehicle

motion as it is for the other c&ses when the angular velocity or

acceleration is input.

S.2 CHANGES TO DiB PROGRAM

The above calculations are done in subroutine, VINPUT. A new

subroutine, QUAT has been added to calculate a quaternion from the yaw,

pitch, and roll angles. Both VINPUT and QUAT are listed in Volume 3.

The changed linea in VINPUT are labelled with JTF984 in column 73.
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6.0 SLIP JOINT

The ATB Hodel insures that joints do not pull apart by ~posing a

constraint force. A new feature that has been added to the model is

termed a "slip joint". The slip joint allows one segment of a

particular tree structure to move linearly along a prescribed axis with

respect to the adjoining segment.

6.1 EQUATIONS

First, we look at the equations for a two segment model.

The linear equations of motion are:

(25)

subject to the constraint equation:

where

are the masses of segment 1 and segment 2,

are the locations of the centers of gravity (inertial

sy stelld,

are the linear accelerations (inertial system),

are the locations of the joint connecting the two

segments (local system),
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~IT. ~2T are the transposes of the direction cosine

matrices.

Ull. U22 are the external forces acting on the segments

(inertial system). and

f is the constraint force at the joint (inertial

system).

For the standard joint. rl and r2 are fixed in the local reference

systems of the respective segments. i.e. the joint does not pull apart.

For the slip joint. equation 26 is replaced by the equation

(27)

where q is displacement of the joint relative to the fixed position rl.
The vector q is constrained to lie along a vector fixed in segment 1.

Thus. for the displacement of the joint

q - a b

a is a scalar (initialized to 0) and

h is a vector fixed in segment 1.

(h is selected as the z axis of the local joint

reference system in segment 1).

(28)

In order to solve the system equations. equation 27 must be doubly

differentiated to obtain an equation for the accelerations. Performing

this differentiation produces a term involving the acceleration of the

scalar a. Since this is not known. it must be eliminated. This is done

by eliminating the component of the differentiated equation 27 that is

parallel to the vector h resulting in a vector equation of rank 2. To

produce a complete set of equations an equation which states that the

constraint force. f. have no component along the free axis. h~ is added
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to the system equations. This process is similar to the process used

for joint constraints as described in Volume 1 of reference 4.

6.2 IMPLEMENTATION

To define a joint as a slip joint the user is asked to provide

additional infonBation on the first card of the two card set B.3.Al ­

B.3Jl. On this card the user specifies:

JOINT(J)

JS(J)

JNT(J)

IPIN(J)

c 5

z:: 7

SR(I,2*J-l)

SRO,2*J)

a& before,

as before,

a& before,

as before plus these new options;

slip joint with complete angular freedom

(same as IPIN II: 2 for angular motion), _"

slip joint with pin as y-axis of joint

(same as IPIN - 1 for angular motion),

(program will use the flexural spring

characteristics),

slip joint with pin as z-axis of the joint in

sepent JNT(J),

(program will use the torsional spring

characteristics),

Negative numbers may be used to indicate that

the joint is initially locked, however, if a

negative number is used to indicate an

initially locked slip joint, ISLIP cannot be 0

(see ISLIP below).

as before,

as before,
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ISLIP

= 1

= 0

=-1

C1

C2

new parameter,

joint is a slip joint,

standard joint or unlocked slip joint,

joint is a slip joint which may be locked or

unlocked for angular motion (depending on +

or - IPIN), but is locked for linear motion.

new parameter, a negative number for the value of

unlocking force for tension,

new parameter, a positive number for the value of

unlocking force for compression.

If C1 and C2 are both zero the joint will not unlock

for slippage.

The slip joints allow the J + 1 joint coordinate system to move along

the z-axis of the JNT(J) joint coordinate system. Tension is movement

along the positive z-axis and compression along the negative z-axis.

When the slip joint is free to slip, spring and damper forces may be

introduced on the slip axis by using the spring damper option in the

model. The spring damper option is specified on the D.8 cards. The

coordinates of the attachment points should be selected as the location

of the joint in the respective segments.

6.3 CHANGES TO PROGRAM

The dimensioa of parameter SR in COKMON/DESCRP/ has been changed to

S&(4,60). For joint J the value of 'a' (see equation 28 above) is

stored in SR(4,2*J-1) and the value of the time derivative of 'a' is
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stored in SR (4.2*J). These values are initialized to zero by

Subroutine BINPUT and are computed by Subroutine CHAIN. The change was

made in all routines using this COMMON block.

A new matrix All has been added to COMMON!CMATiX!. The dimensions are

AIl(3.3.30). Refer to section 4.7 of reference 4 to see how this matrix

is used in the system equations (the matrix Bll is the transpose of

All). Matrix All is computed in Subroutine SETUPI. This change to the

COMMON block was made in all routines which use this COMMON block.

Subroutine BINPUT was modified to input the

(see the above section on implementation).

in the lEULER array and values of Cl and C2

array. These arrays are in COMMON!CEULER!.

parameters ISLIP. Cl. and C2

The value of ISLIP is stored

are stored in the CONST

Subroutine CHAIN was modified to compute the value of 'a' and its

derivative for a slip joint. The values of SEGLP and SEGLV for segment

J+l (joint J) are adjusted to insure that the slip is on the prescribed

axis (axis h equation 28 above).

The DAUX subroutines were modified to introduce the matrix All into the

system equations and account for values of IPIN of 5. 6. or 7.

Subroutines DHHPIN and DRIFT were modified to account for the new values

of IPIN.

Subroutine PDAUX was modified to allow for the integration of the linear

position and velocity of segment J+l if joint J is a slip joint and is

free to slide.

Subroutine ROTATE was modified to accommodate the slip joint.

Subroutines RSTART and SEARCH were updated to account for the change in

the dimension of SR and the new matrix All.
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Subroutine SETUPI was modified to compute the All matrix and the VI

array for the joints.

Subroutine SETUP2 was modified to account for the new values of IPIN.

Subroutine UPDATE was modified to unlock the linear motion of a slip

joint based on the parameters CI and C2 deecribed above.

Subroutine VISPR was modified to accommodate the new values of IPIN.
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7.0 BYPERELLIPSOID OPTION

In order to improve the modeling of corners and other geometries the

option to use hyperellipsoids as contact surfaces rather than standard

ellipsoids was added. This option was originally developed for General

Motors Corporation and has been incorporated into the At! model with

their permission.

A hyperellipsoid is defined as the surface generated by the functional:

(29)

where P is the vector from the center of the hyperellipsoid to

a point on the boundary,

x, y, z are the components of p,
a, b, c are the semi-axes' lengths, and

m is the power of the hyperellipsoid, an even integer.

As with an ellipsoid if

F(p) • 1 the point p is on the hyperellipsoid surface, if

F(p) < 1 the point p is an interior point, and if

F{j» > 1 the point Ii is an exterior point.

If m a 2 the surface is an ellipsoid. For larger values of m the figure

"squares off" at the corners. As m approaches infinity the figure

approaches a rectangular parallelpiped with the same dimensions as the

hyperellipsoid. This makes the hyperellipsoid very useful for

describing contact surfaces.

To compare the hyperellipsoid shape to a parallel piped let x ara, y =
rb, and z a rc in the functional, then the value for r for which this

point is on the hyperellipsoid surface is given in Table 2 for various

powers of m.
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x = a, y = b, and z = c is a vector to the corner of the parallel piped,

therefore r is the ratio between the components of the vector on the

hyperellipsoid surface in the direction of the parallel piped corner and

the components of the vector to the coruer.

Note that for m • 128 the ellipsoid point is within 1% of the corner of

the rectangular parallelpiped.

TABLE 2

Corners of a Hyperellipsoid

m

2

4

8

16

32

64

128

256

512

large

7.1 CONTACT Wlm A PLANE

r

0.57735

0.75984

0.87169

0.93364

0.96625

0.98298

0.99145

0.99572

0.99786

l-log(3)/m ~ 1 - 1.0986/m

",

Subroutine PLELP computes the contact with a plane and has been modified

to allow the use of hyperellipsoids. If the surface is an ellipsoid

represented by the old format the original method of calculating the

point of maximum penetration is used. If the surface is a

hyperellipsoid the surface point whose normal is perpendicular to the"

plane is the point of maximum penetration and can be found by taking the

gradient of the functional in equation 29;
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where a is a positive scalar and

T is the outward normal to the plane.

(30)

The coordinates x, y and z of the point of maximum penetration are

readily obtained from equation 30 as functions of a. a can then be

computed by substituting these coordinates into equation 29. This

computation is done by the double precision function HYPEN. With the

value of a, the point of maximum penetration, XiI is computed and a scale

factor, FM, is determined. This scale factor times the vector iH will

produce the vector from the center of the hyperellipsoid to the plane.

If the surface is an ellipsoid, this vector will locate the center of

the intersection ellipse in the plane. The quantity AKa = l-~ is then

evaluated and if it is less than or equal to zero there is no contact of

the surface with the plane and no further computations are done.

If there is contact, the contact is checked to determine if it is within

the boundaries of the plane and the forces are applied as described in

Section 4 of this report and Vol 1 of Reference 4.

It should be noted that the roll-slide option can not be used with

hy perell ipsoids.

7.2 CONTACT ANOTHER HYPERELLIPSOID

Modifications were made to subroutine SEGSEG to handle the contact of

two hyperellipsoids. Also two new subroutines HYEST and HYNTR were

written to replace subroutine INTERS to calculate the penetration

parameter and the point of force application.
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To determine if penetration exists and the point of force

application,three conditions must be met. First the point of force

application must be the same in both segment coordinate systems:

Where

Ii = ! (p - (I). (31)

P is the point in the first segment's principal coordinate

system,

q is the point in the second segment's principal coordinate

system,

d is the vector between the centers of the two surfaces in the

first segment's principal coordinate system,

! is the transformation matrix from the first to the second

segment's principal coordinate system.

The normal to each surface passing through this point must be parallel

and opposite in sign:

(32)

Whe1:'e

F(p) is the functional of the first hyperellipsoid at point p,
GOO is the functional of the second hyperellipsoid at point q,

'OJ is the vector gradient, and

c is a positive scalar.

Finally, the point is chosen to be within each hyperellipsoid a distance

proportional to the hyperellipsoid size:

(33)

If the value of F(p) (and G(q» is less than 1 the figures intersect, if

the value is greater than 1 no intersection occurs and if the value is 1

the figures just touch at the point p.
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In the original algorithm, since the figures are ellipsoids, equations

(29) and (30) may be combined to form a matrix equation which can be

solved for p as a function of the scalar c. A Newton-Raphson iterative

method is then used to determine the value of c that allows all three

equations to be satisfied (Subroutine INTERS).

In the hyperellipsoid case, equation 30 is no longer a matrix equation

and so a different approach was developed. To obtain a first

approximation the hyperellipsoids are treated as rectangular

parallelpiped 'boxes' whose half-widths are the same as the semi-axes of

the hyperellipsoids. Subroutine HYEST determines whether or not these

'boxes' intersect.

If the 'boxes' intersect, subroutine HYNTR is called to refine the

estimate.

7. 3 N~ SUBROUTINES

A number of new subroutines were added to the ATB model in support of

the hyperellipsoid option. A description of each of these routines

follows. It should be noted that in several of these routines to obtain

approximations of desired quantities reference is made to a 'box'. This

Ibox' is the rectangular parallelpiped that is centered at the center of

a hyperellipsoid. The edges are parallel to the principal axes of the

hyperellipsoid and the half-widths are the same as the semi-axes of the

hyperellipsoid. For large values of the power (the exponent) the

hyperellipsoid almost 'fills I the box.

In order to store the variables required to define a hyperellipsoid the

BD array containing the ellipsoid parameter was reformatted. The

formats now used are listed in Table 3.
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TABLE 3

Format of BD Array

Subscript

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

old format
ellipsoids only

a
b
c
00)
0(2)
0(3)
DTEDO,1)
DTED(2,1)
DTED(3,1)
DTEDO,2)
DTED(2,2)
DTED(3,2)
DTEDO,3)
DTED(2,3)
DTED(3,3)
DTlDO,I)
DTFD(2,1)
DTFDO,1)
DTFDO,2)
DTFD(2,2)
DTFD(3,2)'
DTFDO,3)
DTFD(2,3)
DTFD(3,3)

new format
hyperellipsoids

-1 power of x
a
b
c
0(1)
0(2)
00)
DO, 1)
D( 2,1)
D(3,1)
D(1,2)
D(2,2)
DO,2)
DO,3)
D(2,3)
DO ..3)
l/ a 'J.

I/b2
l/c2
1 power of x
m power of y
n power of z
o if equal powers
not-used

where: 1, m, n are the powers of the hyperellipsoid,
~, b, c are the semi axes of the (hyper)ellipsoid,
o is the offset of the ellipsoid from the c.g. of the segment,
~ is the direction cosine defining the orientation of the

(hyper)ellipsoid with respect to the segment principal axes,
»T~ is the ellipsoid matrix, and
RTi~ is the inverse of the ellipsoid matrix.

7.3.1 Subroutine RYABI (B. Z. A. I)

This routine computes the hyperellipsoid functional, I, and it's

derivatives. It is called by subroutines RYEST and RYNTR.

Inputs:

B BD array for hyperellipsoid containing m, a, b, c

Z array containing x, y, z

56



Equations:

The diagonal hyperellipsoid matrix is

00](y/b)m-2 0

o (z/c)m-2

Outputs:

A 3x3 matrix containing the diagonal elements of the

hyperellipsoid matrix in the first column, the

components of F in the third column.

F the value of the functional

7.3.2 Subroutine HY.8ND(M.Z.IV.U,C.X)

This routine computes a point on the polygon, determined from the

intersection of a plane with a box, that is furthest from an interior

point of the polygon in a specified direction. It is called by

subroutine PLEDG.

Inputs:

M number of points in array i,
i array determined by subroutine HY.80X,

IV pointer array determined by HY.80X,
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U vector direction of interest.

[
+1. use direction of U.

C -1. use -IT direction.

Output:

X point on box in direction of C*U

Equations:

The distance of point i from the origin in the direction

,CO is given by

d = CUTZ(*.i}

Procedure:

The points are examined and the one yielding the maximum d

is stored in X. If two points give the same distance Xis

their average value (the mid-point).

7.3.3 Subroutine

This routine computes the intersection of a plane with the edges of

a rectangular box. It is called by subroutine PLEDG.

Inputs:

E array containing a. b. c. the half-widths of the box.

T the vector normal to the plane.

P the coordinates of a point on the plane.

58



Outputs:

N the number of paired solutions,

IV pointers to on ordered set of solutions,

ZC the coordinates of the points of intersection.

Equations:

Let the origin of coordinates be the center of the box and let the

vectors E(i), i = I, 2, 3, be parallel to the edges of the box and of

length equal to the respective half-widths.

Let Z be the vector

z • u E(l) + v E(2) + w E(3), where u, v, ware scalars.

Z is a point in the box if -1 < u, v, W < 1

If TTf D TTp the point is in the plane.

Procedure:

The box has 6 surfaces, each of these is selected in turn and the

functional TTZ - TTp is evaluated at the four corners of the surface.

If the functional changes sign between any adjacent corners the

plane intersects the edge of the box between these corners.

The intersection point is computed and stored in the array ze.

For each surface, points are obtained in pairs, lines of

intersection of zero length are ignored. The maximum number of pairs

will be 12 and the minimum will be 6 if there is a true intersection of

the plane with the box.
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If at least 6 pairs were found the location in the array ZC of a

unique path over the surface of the box is detennined and stored in the

array IV in such a fashion that the sequence

j ~ IV(k) , k a 1, 3, 5, ••• , N-I will detennine the path going

through the points ZC(*,j).

7.3.4 Subroutine HYDAD(D,A,DAD)

This routine computes the matrix ~TAD where ~ is a direction cosine

matrix and! is a diagonal matrix. It is called by subroutine HYNTR.

Inputs:

~ 3x3 direction cosine matrix,

! array containing diagonal elements of ! (see HYABF)

Output:

DAD the 3x3 product matrix, ~TAD.

Procedure:

The computation is a straight-forward matrix multiplication.

7.3.5 Subroutine HYEST(BK,BN,TAB)

This routine is called by subroutine SEGSEG to make a preliminary

estimation of intersection of two hyperellipsoids if an estimate does

not exist. It is called by subroutine SEGSEG.

Input:

BD arrays containing the data defining the

hyperellipsoids m and n,
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The following inputs are in COMMON/TEMPVS/

i the vector from the center of hyperellipsoid m to the

center of hyperellipsoid n.

~ the direction cosine matrix which transforms for the

segment reference of n to the segment reference of m.

Output:

TAB array used as a memory, contains the same information

as the V array described below if there is an

intersection.

The fOllowing outputs are in COMHON/TEMPVS/

V(i) array containing the fOllowing;

i z 1 value of a (ALP), ratio of magnitudes of gradients at

the intersection points,

2 value of ~ (BE), the expansion factor,

3,4,5 point on hyperellipsoid m,

5.6,7 poiDt on hyperellipsoid n.
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Equations:

Let Z be a vector on m and IT be a vector on n where

z .. ij + e ii ; e is an expansion factor,

a = Iv F I / Iv G I , where F and G are the hyperellipsoid

functionals for Z and IT respectively,

e" II-iii/Iii.

Procedure:

The hyperellipsoids are treated as boxes and subroutine RYLPX is

called to find the largest value of e, Z and U that satisfy the

equation Z .. U + ei.

If the value of e is less than 1 there is no intersection and the

routine exits storing the v~lue of e in the TAB array. The routine also

exits for a value of B equal to 1 since there can be no penetration.

If the value of B is greater than I there is an intersection of the

box€s. In this case the points Z and Uare scaled to lie on the

respective hyperellipsoids, the value of a is estimated and the value of B

for the scaled points is estimated. The results are stored in the TAB

array.

7.3.6 Double Precision Function RYFCN{C,Z,A,P)

This function is used by subroutines RYABF, RYLIM, and RYVAL to

evaluate the term HYFCN • C( Z /A)P in such a fashion as to prevent

underflows. The value of A is always greater than zero and P is

non-negative.
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Equations:

If P c 0. HYFCN K C and if Z • 0. RYFCN K O.

For P >0 and Z ; 0. the value of a parameter q is determined;

q • P(lnlZ I - InA)

If q ~ -88.5. HYFCN c O. Otherwise HYFCN c C exp(q)

Procedure:

The equations are evaluated as above. The value of -88.5 should be

adjusted to represent the smallest value which will not prod~ce an

underflow on the computer being used. (exp(-88.5)· 3.6*10(-39»

7.3.7 Subroutine HYLIM(A.U.B.V.C.W.Z.BD)

This routine is used to calculate the boundaries of the figure

formed by the intersection of a hyperellipsoid and a plane. i.e •• the

point on the figure whose abscissa is a minimum or a maximum. It is

called by subroutine PLEDG.

Input:

IT vector defining horizontal axis (abscissa)

V vector defining vertical axis (ordinate)

C scalar multiplier of Z
W vector such that C*W is in the plane

Z estimate of desired point

BD array containing parameters of hyperellipsoid

63



Output:

A scalar multiplier of U
B scalar multiplier of V
Z desired point

Equations:

Z z: AU + BV + cw origin is center of hyperellipsoid,

T = UxV ; vector cross product, a vector perpendicular

to plane.

Constraints equations;

zTiZ "" 1 functional equation of hyperellipsoid,

VT~ "" 0 boundary constraint, normal perpendicular to

ordinate,

rTz "" crTW Zmust lie in plane,

Procedure:

A first estimate was obtained before calling this routine by a call

to HYBND. This estimate is the value of Z on ~ntry.

First order perturbation equations are used to refine the value of

Z. These equations are:

iTD • crTW - lfT!)
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where D is the perturbation of Z and m is the power of the

hyperellipsoid.

The equations are solved for D and Z is updated as Z u Z + D.

The process is iterated until the perturbations are small when

compared to Z.

When convergence is obtained the values of A and B are computed.

7.3.8 Subroutine HYLPR(Jl,J2,ID,C,S,E,T)

This routine is a simplex method for solving a linear programming

problem. It is called by subroutine HYLPX.

Input:

Jl index of first column to search,

J2 index of last column to search,

ID pointer array to identify columns,

e cost vector,

.§ constraint array,

E temporary storage for pivot column,

Output:

T vector indicating final costs of each column,

~ right hand column contains solutions obtained,

ID pointer to identify columns.
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Equations:

~ is a matrix whose rows are the constraint equations and

whose columns are the coefficients of a particular

variable in these constraint equations. The last column

of ~ is the constant term in the equations.

where Ci is the cost vector of the current solution.

Procedure:

The simplex algorithm is used. The values of T(j) are computed if

any T(j) is positive, variable j is entered into the solution, replacing

the variable whose elimination will reduce the cost. Pointers to the

current solution variables are kept in the ID array which is updated.

The process is iterated until all T(j) are non-positive.

The Jl = J2 the variable identified with column Jl is forced into

the solution and no iteration is performed.

7.3.9 Subroutine HYLPX(BM.BN)

This program is called by subroutine HYESI to solve for the estimate

of the points of intersection of two hyperellipsoids.

Input:

BM,BN BD arrays containing the parameters of hyperellipsoids

m and n.
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The following inputs are in COMHON/TEMPVS/

R the vector from the center of m to the center of n.

the direction cosine matrix which transforms from the nls

reference system to mls reference system.

Output: (in COMMON/TEHPVS/)

V(i) an array containing the following;

i I: 1, 2, 3

i = 4, 5, 6

i I: 7

point on the box enclosing hyperellipsoid m,

point on the box enclosing hyperellipsoid n,

the expansion factor. r

Constraint Equations:

Z-V-13R"O

! Z(i)! < a(i), where a(i) are the semi-axes of m, i = 1,3,

! V(i~ < b(i), where b(i) are the semi-axes of n, i I: 1,3,

Procedure:

T~e array 5 representing the constraint equations is computed. The

value of 8 is assigned a cost of -1, the values of Z and V and their

associated slack vectors are assigned costs of O. Subroutine HYLPR is

called to solve for the values of Z and V which produce the maximum

value of 8.

If after the initial call to HYLPR the associated cost vector

indicates that there is more than one solution HYLPR is recalled to find

all solutions and the results are averaged.
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See the descriptions of subroutines RYEST and RYLPR for more

details.

7.3.10 Subroutine RYNTR(BM,BN, TAB)

This subroutine is called by subroutine SEGSEG to determine the

points on intersecting hyperellipsoids that are used to determine the

'penetration (if any) of these figures.

Inputs:

BM, BN BD arrays containing the parameters of the fig~res

m and n,

TAB array containing the current estimates of the

desired points,

The following inputs are in COMMON/TEMPVS/

R the vector from the center of figure m to the center

of figure n.

~ the direction cosine matrix which transforms a vector

from the segment reference system associated with n

to that of m,

Output:

i .. 1

i .. 2

an array containing:

the value of a,

the value of e,

i = 3, 4, 5 the value of i, the point on m,
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i ... 6, 7, 8 the value of V, the point on n.

This TAB array is offset such that i ... 1 corresponds to a value of i

= 23 in the TAB array used by subroutine SEGSEG.

Equations:

z ... V + aR;

'iJF = - a'iJ G,

F ... I, G ... 1

relation between points,

where F and G are the hyperellipsoid functionals

for the m and n hyperellipsoids respectively.

Let F ... ZTJj., G ... VT!V, 'iJ F = il, 'iJ G = !V, and let dZ, dV, d a

and dS be perturbations of !, V, a and a respectively. The linearized

perturbation equations are:

dZ - dV - d S R ... -Z + V + ai

d@. + a~V + da ~v ... -;J. - a».V

Procedure:

The values stored in the TAB array on entry are used as first

guesses to the variables a, a, Z and V.

The perturbation equations are solved and the values updated. The

procedure is iterated until the perturbations of Z are small compared to

the value of Z.

When convergence is determined the TAB array is updated.
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~l Subroutine HYREA

This subroutine is called by subroutine PLEDG to compute an

approximate area and centroid for the figure formed by the intersection

of a hyperellipsoid and a plane.

All inputs and outputs are in COMHON/TEHPVS/.

Input:

AMI, AM2, AiM, AiP, AXl, AX2,

BMl, BM2, BFM, BFP, BXl, BX2,

AMIN, AMAX, BMIN, BMAX

Output:

coordinates of the boundaries of

the figure

proportional to the area, the true area is this number

times the magnitude of the cross product of the vectors

used to define the abscissa and the ordinate of the

coordinate system used in PLEDG.

AB the location of the centroid 1n the abscissa coordinate,

BB the location of the centroid in the ordinate coordinate,

Equations:

Consider the area below the straight line aegment for the point

(xl,yl) to the point (x2,y2). Then

dx .., x2 - xl

ar .., dx(y2 + yl), twice the increment of area,

ax = ar(x2 + xl) + dx(x2y2 + xlyl), six times the increment

of the abscissa of the centroid,
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ay = ar(y2 + yl) - dxy2yl, six times the increment of the

ordinate of the centroid,

AREA a sum of the ar divided by two,

AB = sum of the ax divided by six times the area,

BB = sum of the ay divided by six times the area,

Procedure:

The sections of the general shape are shown in Figure 9.

Tests are made for the existence of the sections and the formulae are

used to compute the area and the centroid.

(AFM, BMAX) ••-------------... (AFP, BMAX)
(AF2, BMAX), \ (AXl , BMAX)

/ \
/ \

(AMI, max (BAI , BMIN» , \ (AX2, max (BA2, BMIN»
(BMI,min(BAI,BMAX» \ , (BX2,min(BA2,BMAX»

\ /
\ /

(BM2, BMIN)\ , (BXl, BMIN)
(BFM,BMIN) • • (BFP,BMIN)

(abscissa,ordinate)

Figur~ 9 Hyp~r~llipsoid Common Area Boundaries

71



7.3.12 Subroutine HY§OL(A,N,ND)

This routine is a modified Gauss Elimination process for solving a

set of simultaneous equations. It is called by subroutine HYNTR.

Input:

A array containing the simultaneous equations,

N the number of equations,

ND the first subscript of the array A.

Output:

A the reduced (solved) equations. The solutions are in column

N+1 of the array.

Procedure:

Gauss - Elimination is used with the pivot always on the diagonal.

No pivoting is done for a zero diagonal. This modification was

n~cessary because the matrix A may have an all zero column (with a

corresponding all zero row).

7.3.13 Subroutine HYVAL(A,U,R,BD,L)

This routine computes the point on a hyperellipsoid that lies on a

particular line. It is called by subroutine PLEDG.

Input:

IT vector defining line of interest,

i vector locating end point of line,

72



BD array containing hyperellipsoid parameters,

L = 1 indicates point along -IT desired,

= 2 indicates point along +U desired,

Output:

A parameter defining point on U.

Equations:

z = AU + i, point on line IT,

ZT~Z 1, constraint that point lies on hyperellipsoid,

(hyperellipsoid functional)

Perturbation equations:

Let f(A) = ZT!Z - 1, and let e be a perturbation of A. Expand up

to the second derivative with respect to A to get

f(A+e) = f(A) + eft + e2fll/2 = 0,

(f' is the first derivative of f, and f" is the second at A),

e = -f(A)j[f'/2 + sign(f')[(f'/2)2 - f(A)f"/2]1/2]

Procedure:

Subroutine HYVBX is called to determine the point on the box

surrounding the hyperellipsoid in the direction specified by L.

The quadratic perturbation equations are solved and the process

iterated until the functional equation satisfies a prescribed test.
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7.3.14__ Subroutine HYVBX(Q,S,B,M,RM)

This routine is called by subroutine HYVAL to determine the points

of intersection of a vector with a box.

Input:

Q vector which intersects box,

S fixed vector from center of box to Q

B array containing dimensions of box,

Output:

M index identifying solutions, M a 2 if there is an

intersection, MaO for none.

RM array containing the two points of intersection if they exist.

Equations:

. "Z • rQ + S, general point on Q,

, Procedure:

If Z is a point on a face of the box some component of Z must equal

the dimension of the box. Let

B(i) be + or - the half widths of the box,

Z(i), Q(i) and S(i) be the corresponding components of the

vectors Z, Q, and 5 respectively.
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If I (B(i) - S(i»Q(i) + S(j)Q(i)1 < IB(j)Q(i)! then

the point determined by r ~ (B(i) - S(i»/Q(i) will be a desired

point. The inequality is tested for all combinations of the indices and

the unique solutions for r are saved in the array &M. Before exiting

the aM's are ordered such that aM(1) is the mnallest algebraic solution

and RM(2) is the largest.

7.3.15 Function HYFEN(BD. E. V)

This routine is called by subroutine PLELP to compute the value of

ALP which is used in the computation of the intersection of a

hyperellipsoid with a plane. The powers of the hyperellipsoid

functional may be different.

Input:

BD array containing hyperellipsoid information,

E exponents used in computation,

V other constants used in computation.

Output:

HYPEN the value of ALP

•

Equations:

F ... 1 x/a 1 k + I y/bl l + I z/cl m - 1, the hyperellipsoid

functional. Note: for this derivation we assume k, 1 and

m are even integers •

The gradient of F is

(k/a)(x/a)k-l, (1/b)(y/b)1-1, (m/c)(z/c)m-l.
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At the point of maximum penetration the gradient must be parallel to

the plane vector (t!.t2.t3). i.e.

-
Iz/cl m-! m ALPI t31 elm.

PLELP before the call to RYPEN.

The parameter ALP must be determined such that the functional

equation of the hyperellipsoid is satisfied. This equation may be

written as:

Procedure:

The exponent. ~. associated with the maximum value of v's is

determined. The values of ALP is first estimated as:
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The value of F(ALP) is computed. If \F(ALP)\ is less than 10-8 the

functional is assumed to be satisfied and the routine exits. If the

F(ALP) is greater or equal to 10-8 a stepping procedure is used to

modify ALP until convergence is obtained. Note: if the exponents are

all equal. the first estimate of ALP should satisfy the convergence

test.
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