AFAMRL-TR-81-111 Volume I

ARTICULATED TOTAL BODY (ATB) "VIEW" PROGRAM SOFTWARE REPORT, PART I, PROGRAMMER'S GUIDE

BRUCE D. LEETCH WILLIAM L. BOWMAN SYSTEMS RESEARCH LABORATORIES 2800 INDIAN RIPPLE ROAD DAYTON, OHIO 45440

JUNE 1983

Distribution limited to U.S. Government Agencies only, official operational use, June 1983. Other requests for this document must be referred to AFAMRL/BBM.

SUBJECT TO EXPORT CONTROLS

This document contains information for manufacturing or using munitions of war. Exporting this information or releasing it to foreign nationals living in the United States without first obtaining an export license violates the International Traffic In Arms Regulations, 22 USC 2778, such a violation is punishable by up to 2 years in prison and by a fine of \$100,000.

AIR FORCE AEROSPACE MEDICAL RESEARCH LABORATORY BIODYNAMICS AND BIOENGINEERING DIVISION AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

AFAMRL-TR-81-111 Volume I	BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitio)	
·	5. TYPE OF REPORT & PERIOD COVERED
ARTICULATED TOTAL BODY (ATB) "VIEW	
PROGRAM SOFTWARE REPORT, PART I,	
PROGRAMMER'S GUIDE	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(*)
Bruce D. Leetch, William L. Bowman	F33615-81-C-0500
	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Systems Research Labatories, Inc. 2800 Indian Ripple Road	622025. 7221 15 02
Dayton, OH 45440	62202F; 7231-15-02
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
AFAMRL, Biodynamics and Bioengineering	JUNE 1983
m • • • · · · · · · · · · · · · · · · ·	13. NUMBER OF PAGES
Wright-Patterson, Air Force Base, OH 45433	202
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTION LIMITED TO U.S. GOVERNMENT AGENCIES ONLY, OFFICIAL OPERATIONAL USE, JUNE 1983. OTHER REQUEST FOR THIS DOCUMENT MUST BE REFERRED TO AFAMRL/BBM

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

SUBJECT TO EXPERT CONTROLS

AFAMRL CONTACT: Mr. R. Rasmussen, AFAMRL/BBM, extension 513-255-3667

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Computer Simulation Human Body Model

Ejection

Crash Victim Simulation

Human Body Model
Aerodynamic Forces
Mathematical

Harness Restraint System
Three Dimensional Dynamics

Computer Graphics

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The Articulated Total Body Model (ATBM) is used by the AFAMRL to study the biomechanics of pilot-seat ejection. The VIEW program provides a graphical representation of the simulation output from the ATBM.

The VIEW input data consist of two files. The first file, output from the ATBM, consists of body element and contact plane information. The second file contains control data necessary for running VIEW and additional planar surfaces for visual enhancement of the plots.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

20. Abstract (continued)

VIEW output consists of two files. The first file is a listing file containing an echo of the input data and debug messages. The second file is the graphics output of VIEW. VIEW graphics can be output to four different devices: single color and multicolor Calcomp plotters and single color and multicolor graphics terminals.

This document is Part I of a two-part set. This part (Programmer's Guide) contains a detailed software description of VIEW. It is designed for the experienced FORTRAN programmer trying to understand the theory and structure of the VIEW program itself. In the Programmer's Guide, the structure and purpose of each program module is delineated and the meaning of each variable is described. In addition, the more complex technical and mathematical considerations governing the programming rationale are presented in four appendices.

TABLE OF CONTENTS

Section		Page
1.0	INTRODUCTION	6
2.0	INSTALLING THE VIEW PROGRAM	8
	2.1 POSSIBLE PROGRAM MODIFICATIONS	8
3.0	VIEW PROGRAM MAINLINE DESCRIPTION	10
4.0	VIEW PROGRAM SUBPROGRAM DESCRIPTIONS	12
	4.1 MAIN PROGRAM	13
	4.2 SUBROUTINE BUILDIE	14
	4.3 SUBROUTING CLIP	17
	4.4 SUBROUTINE CONVREC	19
	4.5 SUBROUTINE CROSS	21
	4.6 FUNCTION DET	22
	4.7 SUBROUTINE DOT	23
	4.8 SUBROUTINE DOTT	24
	4.9 SUBROUTINE DRCYPR	25
	4.10 SUBROUTINE ELIPSN	27
	4.11 SUBROUTINE EXTEND	28
	4.12 SUBROUTINE GENDCM	30
	4.13 SUBROUTINE HIDE	32
	4.14 SUBROUTINE HYDE	33
	4.15 SUBROUTINE INPUT	34
	4.16 SUBROUTINE LSEGINT	36
	4.17 SUBROUTINE MAT	37
	4.18 SUBROUTINE NFRAME	38
	4.19 SUBROUTINE OVERLAP	39
	4.20 SUBROUTINE PLPLN	40
	4.21 SUBROUTINE PNTPLT	41
	4.22 SUBROUTINE POLYD	44
	4.23 SUBROUTINE PREPLT	47
	4.24 SUBROUTINE PRJELR	50

TABLE OF CONTENTS (continued)

Section			Page
•	4.25	SUBROUTINE PRJPLY	51
	4.26	SUBROUTINE PSE	52
	4.27	SUBROUTINE ROT	54
	4.28	SUBROUTINE SOLVA	56
	4.29	SUBROUTINE SOLVR	57
	4.30	SUBROUTINE TITLE	58
	4.31	SUBROUTINE TPOINT	59
	4.32	SUBROUTINE TRANS1	62
	4.33	FUNCTION XINTCP	65
	4.34	SUBROUTINE XYZ	66
	4.35	FUNCTION YINTCP	68
	4.36	SUBROUTINE YZ	70
	4.37	SUBROUTINE Z	71
		· ·	
5.0	VIEW	PROGRAM FLOWCHARTS	73
	5.1	VIEW MAIN	74
	5.2	BUILDIE	75
	5.3	CLIP	76
	5.4	CONVREC	77
	5.5	ELIPSN	78
	5.6	EXTEND	79
	5.7	GENDCM	80
	5.8	HIDE	81
	5.9	INPUT	82
	5.10	LSEGINT	83
	5.11	OVERLAP	84
	5.12	PLPLN	85
	5.13	PNTPLT	86
	5.14	PREPLT	87
	5.15	POLYD	88
	5.16	PRJELR	89
	5.17	PRJPLY	90

TABLE OF CONTENTS (continued)

Section			Page
	5.18	PSE	91
	5.19	XINTCP	92
	5.20	YINTCP	93
6.0	VIEW	PROGRAM VARIABLE GLOSSARIES BY PROGRAM MODULE	94
	6.1	COMMON BLOCK VARIABLE DEFINITIONS	94
	6.2	MAIN PROGRAM	99
	6.3	SUBROUTINE BUILDIE	100
	6.4	SUBROUTINE CLIP	100
	6.5	SUBROUTINE CONVREC	102
	6.6	SUBROUTINE CROSS	102
	6.7	FUNCTION DET	102
	6.8	SUBROUTINE DOT and DOTT	103
. •	6.9	SUBROUTINE DRCYPR	103
	6.10	SUBROUTINE ELIPSN	104
	6.11	SUBROUTINE EXTEND	105
	6.12	SUBROUTINE GENDCM	105
	6.13	SUBROUTINE HIDE	106
	6.14	SUBROUTINE HYDE	106
	6.15	SUBROUTINE INPUT	107
	6.16	SUBROUTINE LSEGINT	108
	6.17	SUBROUTINE MAT	108
	6.18	SUBROUTINE NFRAME	109
	6.19	SUBROUTINE OVERLAP	109
	6.20	SUBROUTINE PLPLN	110
	6.21	SUBROUTINE PNTPLT	110
	6.22	SUBROUTINE POLYD	112
	6.23	SUBROUTINE PREPLT	113
	6.24	SUBROUTINE PRJELR	114
	6.25	SUBROUTINE PRJPLY	115
	6.26	SUBROUTINE PSE	115
	6.27	SUBROUTINE ROT	116
	6.28	SUBROUTINES SOLVA, SOLVR	116
•	6.29	SUBROUTINE TITLE	116

TABLE OF CONTENTS (continued)

Section			Page
	6.30	SUBROUTINE TPOINT	117
	6.31	SUBROUTINE TRANS1	117
	6.32	FUNCTION XINTCP	118
	6.33	SUBROUTINE XYZ	118
	6.34	FUNCTION YINTCP	119
	6.35	SUBROUTINE YZ, Z	119
7.0		OUTINE, COMMON BLOCK, AND VARIABLE S-REFERENCE CHARTS	120 121
	7.1 7.2	COMMON BLOCK CROSS-REFERENCE CHART	121
	7.3	VARIABLE CROSS-REFERENCE CHART	123
8.0	VIEW	PROGRAM SOURCE LISTING	124
APPENDIX		HIDDEN LINE PROBLEM BETWEEN TWO ELLIPSOIDS	171
APPENDIX	В	DISCUSSION OF EQUATIONS USED BY PRJELR	180
APPENDIX	С	INTERSECTION OF A THREE SPACE VECTOR AND PLANE	193
APPENDIX	(D	INTERSECTION OF LINE SEGMENTS IN A PLANE	195

LIST OF ILLUSTRATIONS

Figure		Page
4.1	Example of Data Used by BUILDIE	16
4.2	Point of Intersection for All Three Planes in CONVREC	21
4.3	Pictorial Representation of Equations in POLYD	46
4.4	Figure for Variables in PREPLT	48
4.5	Meaning of Vectors in Arrays in PRJPLY	53
4.6	Cross-Product Test with Convex Polygon in TPOINT	61
4.7	Cross-Product Test with Concave Polygon in TPOINT	62
4.8	Vectors Used by TRANS1	64
4.9	Variables Used by XINTCP	67
4.10	Variables Used by YINTCP	70
A.1	Coordinate Systems and Vectors Used to Solve the Hidden Line Problem	172
B.1	Three Radial Vectors	181
C.1	Intersection of a Three Space Vector and a Plane	194

1.0 INTRODUCTION

The Articulated Total Body Model (ATBM) computer program simulates gross human body motion in response to internally or externally applied forces.

Program VIEW was written to provide visual computer-aided data analysis for users of the ATBM program. It plots a pictorial representation of simulation-generated body position data at any constant time step. These plots, since they are projected views as seen by a camera, can be directly compared with pictures taken from tests using dummies or human subjects. The plots from the VIEW program provide an efficient method for preparing and checking initial position data used for input to the ATBM program. Still pictures of the initial position of the pilot and cockpit configuration can be overlaid with plots from program VIEW that represent body position data at time step zero. The input data can then be adjusted until the desired positions of the body segment contact ellipsoids are obtained.

Plots from program VIEW approximate pictures taken with a camera because of the projection technique used by the program. Three-dimensional objects are projected through a point onto a projection plane. This is similar to 3D objects being projected through a lens onto a film plane. The viewpoint used by program VIEW must be placed at the corresponding position and orientation of the camera lens to reproduce the same aspect. Then, by selecting the correct scale factor, plots from the program VIEW can be overlaid with pictures from the camera. This provides a convenient means for pictorally comparing simulated and photographic experimental data.

The basic graphics elements used in program VIEW are ellipsoids and polygons. These basic elements correspond to the ellipsoids and contact planes used in the ATBM program. The VIEW program has the capability to plot convex polygons with up to four sides which allows the plotting of realistic figures. The graphic elements for VIEW are defined by data stored on logical unit number (LUN) 1 which is a data file generated by the ATBM simulation program. VIEW reads the ATBM input file to obtain linear position and orientation data for the elements at any requested constant time step.

Each element is represented by a set of contour lines that are projected to form an image on the projection plane. Each contour line consists of a set of connected vectors in three-space that projects to a set of connected vectors on the projection plane.

The first step in generating the 3D ellipsoid images is to define contour lines for ellipsoids. This is done by setting up a grid mesh in the local X-Y plane of the ellipsoid. The Z values for the contour vectors are calculated using a constant X value and changing Y by constant increments. This results in ellipsoidal contour lines that are concentric about the local X axis of the ellipsoid. Since these contour lines are fixed to the local coordinate system of the ellipsoid, any rotation of the ellipsoid will be seen as rotation of the projected contour lines. Polygon contour lines are defined by a set of vectors in the global reference frames, each of which represents a side of the polygon. These vectors are projected in the same manner as ellipsoidal vectors. The result is a plot of the projected contour of the polygon.

Hidden line routines are included in the VIEW program. These routines eliminate sections of contour lines that are hidden from a viewer positioned at the viewpoint. Some lines are hidden because they are on the surface of an ellipsoid that faces away from the viewer. Other lines are hidden because another element blocks that contour line from the viewer. The routines that check for hidden lines are formulated to handle elements that are imbedded in other elements. For example, an ellipsoid can be imbedded in another ellipsoid. The contour lines will be drawn only up to the intersection of the surfaces.

2.0 INSTALLING THE VIEW PROGRAM

The VIEW program source code contains 1717 lines of FORTRAN code, consisting of a mainline and 36 subroutines and functions. The subroutines and functions are in alphabetical order. VIEW was originally developed on a CDC 6600 and has since been implemented on a Perkin-Elmer 3242 computer and an IBM 370 computer. The version used for development of this document was the Perkin-Elmer version. All Calcomp plotting calls are standard except the call to the initialization subroutine PLOTS which will be discussed later. All other subroutines and functions are either contained within the program or are standard intrinsic FORTRAN functions (SQRT, COS, etc.).

2.1 POSSIBLE PROGRAM MODIFICATIONS

Although the VIEW program source code may compile and execute properly on the target system, slight modifications may be necessary due to compiler differences. They include the following:

- a. In certain FORTRAN compilers, seven character subroutine names are allowed. VIEW has incorporated this feature. If the FORTRAN compiler on the target system does not allow this, subroutines BUILDIE, CONVREC, LSEGINT, OVERLAP, and all references to these subroutines must be trimmed to six characters or less.
- b. This version of VIEW was implemented on a 32 bit machine. The character packing per word factor was set to 4 (A4). If the target computer is other than a 32 bit machine, the character packing factor will have to be changed (16 bit to A2, 60 bit to A7, etc.). This is done by altering the format with statement label 200 in the mainline and the format with statement label 200 in subroutine TITLE. Allow for 8 bits per character.

- c. Hollerith strings in this version of VIEW are enclosed by single quotes ('. . .'). On other target systems, new delimiter characters may be needed (e.g., *. . .*, ". . .," etc.).
- d. In READ statements, the END = feature was used to check for endof-file on the input files. If this feature is not in the target system FORTRAN compiler, an alternative means of checking for end-of-file will have to be used (e.g., EOF function on CDC systems).
- e. The call to the Calcomp subroutine PLOTS in the mainline is for a Perkin-Elmer system [call PLOTS(0, 0, LUPLOT) where LUPLOT is the logical unit number of the plotting device]. Consult your system operator for the protocol used on the target system call to PLOTS.
- f. The subroutine NFRAME is designed for a Grinnell color graphics subsystem on a Perkin-Elmer 3240. If this option is chosen for the VIEW program, consult your system operator for the protocol needed to interface to your graphics system.

3.0 VIEW PROGRAM MAINLINE DESCRIPTION

The general functions of the VIEW program are listed in the numbered blocks in the flow chart of the main routine (Section 5.1). A general description of each block will be given. For further information on a particular block, see the subroutine descriptions later in this report.

Block No. 1 calls subroutine INPUT to read data from the input control file and the ATBM input file. The input control file defines parameters for selecting what data are to be plotted. The ATBM input file contains data generated from the ATBM program on unit 1 that defines object sizes, orientations, and positions.

Block No. 2 calls subroutine CONVREC to convert rectangles used as contact planes in the ATBM program to polygons used in the VIEW program and to transfer planar coordinates for all polygons to the inertial reference system. See the discussion of CONVREC (Section 4.4) for further information.

Block Nos. 3, 4, and 6 are used to decrease the computation time of the hidden line subroutines. Without these three blocks, the hidden line subroutines would have to check out every point or 'vector head' against all objects to determine if that point was hidden or not hidden. The subroutines contained within these three blocks project all objects onto the projection plane and generate perimeters for all the shadows of the projected objects.

In Block No. 3, subroutine PRJPLY projects the ATBM and input polygons onto the projected plane. This is the form needed by the analysis performed by subroutine BUILDIE in Block No. 6.

In Block No. 4, subroutine PRJELR performs the projection of the ellipsoids. Ellipsoids, in general, project as complex, nonelliptical shadows. If the viewpoint coordinate system points directly at the center of the ellipsoid, the ellipsoid projects to an elliptical shadow. The subroutine assumes that this is the case. PRJELR projects all ellipsoids

as elliptical shadows circumscribed with rectangles to conform with the format of subroutine BUILDIE.

In Block No. 5, subroutine POLYD is called to generate the directional cosine matrices for all polygons. See the description of POLYD (Section 4.22) for further information.

In Block No. 6, subroutine BUILDIE takes the polygons formed by the third and fourth blocks to build an array that defines object overlap. RUILDIE starts with the first object and records the object numbers of all polygons that overlap with the first object. Then the second object is selected and so forth until all objects and their overlapping objects are stored in the array IE.

Blocks No. 7 and No. 8 call subroutines PSE and PLPLN to check each vector against all the blocking objects recorded in the array IE with the hidden line subroutines. If the vector is not hidden, it is projected through a point onto the projection plane. The resultant vector is plotted. Note that while projections performed by PRJPLY and PRJELR are only on the perimeter of the shadow of each object, in PSE and PLPLN, the projections are of vectors that make up the contours of the objects. The program returns to Block No. 1 to get the next data set.

4.0 VIEW PROGRAM SUBPROGRAM DESCRIPTIONS

No.	Name	Type
1	MAIN	Main Program
2	BUILDIE	Subroutine
3	CLIP	Subroutine
4	CONVREC	Subroutine
5	CROSS	Subroutine
6	DET	Real Function
7	DOT	Subroutine
8	DOTT	Subroutine
9	DRCYPR	Subroutine
10	ELIPSN	Subroutine
11	EXTEND	Subroutine
12	GENDCM	Subroutine
13	HIDE	Subroutine
14	HYDE	Subroutine
15	INPUT	Subroutine
16	LSEGINT	Subroutine
17	MAT	Subroutine
18	NFRAME	Subroutine
19	OVERLAP	Subroutine
20	PLPLN	Subroutine
21	PNTPLT	Subroutine
22	POLYD	Subroutine
23	PREPLT	Subroutine
24	PRJELR	Subroutine
25	PRJPLY	Subroutine
26	PSE	Subroutine
27	ROT	Subroutine
28	SOLVA	Subroutine
29	SOLVR	Subroutine
30	TITLE	Subroutine
31	TPOINT	Subroutine
32	TRANS1	Subroutine
33	XINTCP	Real Function

34	XYZ	Subroutine
35	YINTCP	Real Function
36	XYZ	Subroutine
37	· Z	Subroutine

4.1 MAIN PROGRAM

a. Purpose

Main program for the VIEW plotting package providing graphical representation of the ATB model output. Controls the initialization, data input, data processing, and plotting output functions of the program.

b. Subroutines Required

BUILDIE, CONVREC, DOT, ELIPSN, INPUT, MAT, NEWPEN, NFRAME, NUMBER, PLOT, PLOTS, PLPLN, POLYD, PRJELR, PRJPLY, PSE, SYMBOL, TITLE

c. Labeled Common Blocks Used

ATB, DBUG, ELLIPSE, INTERS, PLTT, POLYGON, VIEWP

d. Input or Argument Parameters

Input cards 1.0, 3.0, and 4.0

e. Optional Output

IDEBUG (1) = 1, print NIE array

IDEBUG (2) = 2, print IE array

f. Procedure

- 1. Read input cards 1.0, 3.0, and 4.0. Call subroutine INPUT to get ATB data.
- 2. Call subroutine CONVREC to convert ATB rectangles to VIEW polygon and to transform all polygon data from the segment coordinate system to the inertial coordinate system.
- 3. Call subroutine PRJPLY to project polygons onto the projected plane.
- 4. Call subroutine PRJELR to circumscribe ellipsoids with rectangles and project them to the projected plane.
- Call subroutine POLYD to generate directional cosine matrices.
- 6. Call subroutine BUILDIE to define object overlap.
- 7. Call subroutines PSE and PLPLN to plot ellipsoids and polygons, then go get next data set.

4.2 SUBROUTINE BUILDIE

a. Purpose

The BUILDIE subroutine is called by the main routine to build the IE and NIE arrays. These arrays are used by the hidden line routines to determine if any objects block the point being plotted. This subroutine uses the data stored in the CONVEC array. See Figure 4.1 for a pictorial example of the data used by BUILDIE routine. The rectangles represent the projected ellipsoids of the ATB program. The ellipses are circumscribed with rectangles because algorithms dealing with polygon overlap require less memory and computation time than with algorithms

that look for ellipse overlap. The rectangles shown in Figure 4.1 are sufficient to assure that no object overlap will be missed. The area inside the rectangles is larger than the area inside the circumscribed ellipse. While there is a chance that the BUILDIE routine would find two objects to overlap that really just missed, such a result will not make the plot incorrect; it just increases the computation time of the hidden line routines.

b. Subroutines Called

OVERLAP

c. Labeled Common Blocks Used

ELLIPSE, INTERS, POLYGON, REMOVE

d. Input or Argument Parameters

None

e. Optional Output

None

f. Procedure

The flow of BUILDIE starts with initializing the NIE and IE arrays. If the number of segments is equal to zero, the routine goes on and examines the polygons. If there are segments, the first one is selected, and immediately its own segment number is inserted in the IE array to indicate that it can hide portions of itself. Next, any other segment that is found to overlap with the first segment is recorded in the IE array. The fact of the overlap is recorded two places, once in the portion of the array for segment No. 1, and once in the portion of the array

Figure 4.1 Example of Data Used by BUILDIE

that represents the other segment. In this way all segments are checked against each other until all segment-segment overlaps are recorded in the IE array. After the segment-segment overlaps are recorded, they are recorded in the IE array. Segment numbers are always less than 31, and polygon numbers are always greater than 30.

4.3 SUBROUTINE CLIP

a. Purpose

The purpose of this subroutine is to correctly execute the first draw that crosses a boundary (X or Y) of the valid plotting region. What is meant by "correctly execute" is that the intended draw extends to the boundary, but not beyond it. All further plotting after this draw is "clipped," i.e., not drawn, until the pen returns to the valid plotting region. The valid plotting region is described by the variables XMIN, XMAX, YMIN, and YMAX. CLIP also takes care of the special circumstance that the point being clipped is the first point in a line segment.

b. Subroutines Called

PLOT, XINTCP, YINTCP

c. Labeled Common Blocks Used

None

d. Input or Argument Parameters

X -- X Coordinate of Point to be Plotted
 Y -- Y Coordinate of Point to be Plotted
 XSAV -- X Coordinate of Last Point Plotted
 YSAV -- Y Coordinate of Last Point Plotted
 XMIN -- X Coordinate of Left Side of Plotting Region

XMAX -- X Coordinate of Right Side of Plotting Region

YMIN -- Y Coordinate of Bottom of Plotting Region

YMAX -- Y Coordinate of Top of Plotting Region

IPEN -- Calcomp Pen Control Variable

IPLOT -- Flag that Tells CLIP if Last Pen Move
 Was Clipped (IPLOT=Ø) or Not Clipped (IPLOT=1)

e. Optional Output

None

f. Procedure

The first function of CLIP is to handle the special circumstance that the point being clipped is the origin of a line. reason this merits special treatment is that there is no previous point in the line from which a new point can be interpolated. The subroutine must wait until the next call to do this. So, the first step in the subroutine is to check the last call flag and see if it is set (LCALL = 1). If it is set, it means that on the previous call, a clip was performed on the origin of a line segment. What CLIP does is determine the X and Y coordinates to move the pen. The X coordinate is either the X intercept if the Y coordinate was off the plotter or the X boundary value if the Y was on the plotter. The Y coordinate is either the Y intercept value if the X coordinate was off the plotter or the Y boundary value if the X coordinate was on the plotter. CLIP moves the pen (up, IPEN = 3) to the point denoted by the X and Y coordinates, resets the previous X and Y coordinate variables (XSAV and YSAV), and clears the last call flag (LCALL = 0). If LCALL was not set at the beginning of the subroutine, CLIP skips this portion of the code.

The second step of this first function is to check if the current point being clipped is the origin of a line. If this is true (IPLOT = 1 and IPEN = 3), the coordinates of the point are

saved in XLSAV and YLSAV, and the last call flag is set to one (LCALL = 1). If this second step was executed, the subroutine exits here. If not, it continues.

The second function of CLIP starts here. The subroutine determines if the clip flag has been set (IPLOT = 1). This is the flag that enables only the valid portion of the first segment clipped to be plotted. IPLOT is cleared after plotting and is kept clear until the pen returns to a valid X or Y coordinate. It is then reset by a draw in the valid plotting region. The X and Y coordinates are calculated by looking at the XOFF and YOFF flags and using either XINTCP and YINTCP functions or the X and Y boundaries. A line is drawn to that point. The clip flag IPLOT is cleared and the subroutine exits.

4.4 SUBROUTINE CONVREC

a. Purpose

The purpose of subroutine CONVREC is as follows. The ATB simulation program outputs plane information in the form of three plane equations that define boundary planes that bound the rectangle. The coordinate system used for defining these planes can be any one of the following three.

- 1. A rectangle defined in the inertial reference frame.
- 2. A rectangle defined in the vehicle reference frame.
- 3. A rectangle defined in the segment reference frame.

The VIEW plotting package works with polygons in an inertial reference frame. Therefore, each of the three possibilities described above must be converted to the format used internally in the VIEW plotting package.

Subroutine CONVREC converts rectangles in the ATB simulation format to polygons in the VIEW plotting format. It then transforms the vectors to the vertices of all the polygons from the coordinate system of the segment they are tied to the inertial reference system.

b. Subroutines Called

DET, DOT

c. Labeled Common Blocks Used

ATB, CONECT, DBUG, ELLIPSE, POLYGON

d. Input or Argument Parameters

None

e. Optional Output

IDEBUG(4) = 1; print reference segment number (ISG), plane number, and plane vectors in inertial reference.

f. Procedure

The equations that represent the rectangle in the ATB output are as follows:

- 1. AOX + BOY + COZ = DO
- 2. A1X + B1Y + C1Z = D1
- 3. A2X + B2Y + C2Z = D2

Solving these equations simultaneously gives a point of intersection of all three planes (see Figure 4.2).

This point is the point P1 used by the VIEW program for defining polygons. The VIEW program defines polygons by specifying the position of all corners. \vec{r} is the normal to plane number 3, and \vec{r}_3 is the normal to the plane number 2. The length of \vec{r}_2 and \vec{r}_3 are obtained from the output of the ATB simulation program. Each corner of the polygon is found by adding the contour vectors of the rectangle in succession. This is done for all polygons read from the ATB input file.

Figure 4.2 Point of Intersection for all Three Planes in CONVREC

4.5 SUBROUTINE CROSS

a. Purpose

Computes vector cross product $\vec{C} = \vec{A} \times \vec{B}$.

b. Subroutines Required

None

c. Labeled Common Blocks Used

d. Input or Argument Parameters

A, B, C: Arrays, each consisting of three elements, that represent vectors where the cross product is defined by $\vec{C} = \vec{A} \times \vec{B}$.

e. Optional Output

None

f. Procedure

Computes each element of \vec{C} by

$$c_1 = a_2b_3 - a_3b_2$$

$$c_2 = a_3b_1 - a_1b_3$$

$$c_3 = a_1b_2 - a_2b_1$$

4.6 FUNCTION DET

a. Purpose

DET finds the determinant of the 3×3 square array passed to it.

b. Subroutines Called

None

c. Labeled Common Blocks Used

d. Input or Argument Parameters

Values Representing Square, 3×3 Array

e. Optional Output

None

f. Procedure

The determinant is calculated in the following manner:

DET =
$$A11*(A22*A33-A23*A32) - A12*(A21*A33-A23*A31) + A13*(A21*A32-A22*A31)$$

4.7 SUBROUTINE DOT

- a. DOT performs matrix multiplication $C = \underline{A'B}$. If \vec{A} and \vec{B} are vectors, C is the dot product $\vec{A} \cdot \vec{B}$.
- b. Subroutines Required

None

c. Labeled Common Blocks Used

- d. Input or Argument parameters
 - A Matrix of Size (L,N)
 - B Matrix of Size (L,M)
 - C Product Matrix of Size (N,M)
 - N,M,L Sizes of Matrices A,B,C
- e. Optional Output

None

f. Procedure

Each element C(I,J) of the product matrix C is computed by:

$$C(I,J) = \sum_{K=1}^{L} A(K,I) * B(K,J)$$
 for $I = 1,N$ and $J = 1,M$

- 4.8 SUBROUTINE DOTT
 - a. Purpose

DOTT performs the matrix multiply C = AB'

b. Subroutine Called

None

c. Labeled Common Blocks Used

d. Input or Argument Parameters

A - Matrix of Size (N,L)
B - Matrix of Size (M,L)
C - Matrix of Size (N,M)
N,M,L - Sizes of Matrices A,B,C

Commence of the second

e. Optional Output

None

f. Procedure

Each element C(I,J) of the product matrix C is computed as:

$$C(I,J) = \sum_{K=1}^{L} A(I,K) * B(J,K)$$
 for $I = 1,N$ and $J = 1,M$

4.9 SUBROUTINE DRCYPR

a. Purpose

Sets up direction cosine matrix \underline{D} for rotation angles A given in degrees about local the x, y, or z axis of the segment in question as indicated by I1, I2, or I3.

b. Subroutines Required

MAT, ROT

c. Labeled Common Blocks Used

d. Input or Argument Parameters

D -- 3 × 3 direction cosine matrix to be computed.

A -- 3 rotation angles given in degrees.

ID -- 3 integers (I1, I2, and I3) that indicate axis of rotation for each of the three angles in A (1, 2, or 3 indicates x, y, or z axis, respectively).

e. Optional Output

None

f. Procedure

Computes as a matrix product

$$D = D_{13}D_{12}D_{11}$$

where each D_{I} is one of the following

$$\underline{D}_{1} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \alpha & \sin \alpha \\
0 & -\sin \alpha & \cos \alpha
\end{pmatrix}$$

$$\underline{D}_{2} = \begin{pmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{pmatrix}$$

$$\underline{D}_3 = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

depending as I1, I2, and I3 have values of 1, 2, or 3.

Note: (1) For the normal sequence of yaw (Ψ) , pitch (θ) , and roll (ϕ) , let ID = 3, 2, 1 to obtain

$$\underline{D} = \underline{D}_{\phi} \ \underline{D}_{\theta} \ \underline{D}_{\psi} = \underline{D}_{1} \ \underline{D}_{2} \ \underline{D}_{3}$$

(2) For the reverse sequence as required by Subroutine INITIAL prior to Version 18 of the ATB program, let ID = 1, 2, 3 to obtain

$$\underline{D} = \underline{D}_{\psi} \ \underline{D}_{\theta} \ \underline{D}_{\phi} = \underline{D}_{3} \ \underline{D}_{2} \ \underline{D}_{1}$$

(3) For Euler angles, precession (ϕ) , nutations (θ) , and spin (ψ) , let ID = 3, 1, -3 to obtain

$$\underline{D} = \underline{D}_{\psi} \ \underline{D}_{\theta} \ \underline{D}_{\phi} = \underline{D}_{3} \ \underline{D}_{1} \ \underline{D}_{3}$$

.4.10 SUBROUTINE ELIPSN

a. Purpose

Subroutine ELIPSN generates the X1 array of contour vectors for a quarter of the ellipsoid. These contours are used by subroutine PSE to generate complete contours for the entire ellipsoid.

b. Subroutines Called

SQRT

c. Labeled Common Blocks Used

ELLIPSE

d. Input of Argument Parameters

INDEX -- Number of Steps Plus One

X1 -- Array Containing a Quarter of the Ellipsoid

IN -- Array Containing Number of Points in each

Contour Array ..

entra de la companya de la companya

e. Optional Output

None

f. Procedure

ELIPSN is called once for each ellipsoid. For each step for ellipsoid, calculate X and Y coordinates. Calculate test variable [TEST = $(1-X^2*SIMP1) - Y^2*SIMP2$]. If result is negative, it means point is not on the ellipsoid. In this case, Y coordinate is calculated as

$$\sqrt{\frac{1-X^2 * SIMP1}{SIMP2}}$$

and Z is set to zero. The results are stored in X1. If TEST was positive, Z is calculated and the results are stored in X1.

4.11 SUBROUTINE EXTEND

a. Purpose

EXTEND is a subroutine used in conjunction with the hidden line routines. This routine removes large gaps that could exist around boundaries where contour lines are hidden and not hidden. The gaps are caused by dividing up contour lines into a set of vectors. Once it is determined that a particular vector crosses a boundary, only a portion of the vector must be plotted. If the entire vector were left unplotted, a gap would

exist around these boundaries. The size of the gaps would then cover the range from very small to the size of the vector. The EXTEND subroutine is called whenever a vector passes through one of these boundaries. EXTEND finds the portion of the vector not hidden and returns this information to the plotting subroutine.

b. Subroutines Called

HIDE, HYDE

c. Labeled Common Blocks Used

ELLIPSE, INTERS, PLTT

d. Input or Argument Parameters

- P -- Contains X, Y, and Z coordinates of the two end points of the line.
- I -- Points to unhidden point location in P array.
- J -- Points to hidden point location in P array.

e. Optional Output

None

f. Procedure

EXTEND starts by finding the midpoint for a line between the X, Y, and Z coordinates found in array P. This midpoint is passed to either subroutine HYDE (ellipsoids) or HIDE (polygons) to check if contour line is hidden. If it is hidden, the midpoint coordinates are loaded into row J of array P. If it is not hidden, the midpoint is loaded into row I of array P.

4.12 SUBROUTINE GENDCM

a. Purpose

The name of GENDCM stands for generate direction cosine matrix. This subroutine creates a direction cosine matrix from information that is readily available to the user of program VIEW. GENDCM requires two position vectors to define the view-point position and orientation. Vector \overrightarrow{VP} defines the position of the viewpoint in the reference frame of the segment to which the viewpoint is attached. Vector \overrightarrow{RA} defines a point where the viewpoint coordinate system is aimed. The aiming of the viewpoint coordinate system is determined by the direction of the positive Z axis. The viewpoint always looks down the positive Z axis.

b. Subroutines Called

SQRT

c. Labeled Common Blocks Used

None

d. Input or Argument Parameters

- CAMERA -- Position vector for the viewpoint in the reference frame of the segment to which the viewpoint is attached (X, Y, Z coordinates).
- FOCUS -- Position vector for point which viewpoint Z axis is aimed (X, Y, Z coordinates in the reference frame of the segment to which the viewpoint is attached).
- D -- Direction cosine matrix for viewpoint (transformed from the inertial coordinate system to the viewpoint coordinate system).

e. Optional Output

None

f. Procedure

GENDCM assumes the \hat{X} axis of the viewpoint coordinate system remains parallel to the X-Y plane of the inertial reference frame. Also, \hat{X} axis must be normal to the \hat{Z} axis in the X-Y plane of the inertial reference frame. \hat{Z} in the X-Y plane is given by

$$\left(\frac{\mathsf{Z}_1}{|\vec{\mathsf{Z}}|}, \frac{\mathsf{Z}_2}{|\vec{\mathsf{Z}}|}, 0\right)$$

and

$$\left(\frac{\mathsf{Z}_2}{|\vec{\mathsf{N}}|}, -\frac{\mathsf{Z}_1}{|\vec{\mathsf{N}}|}, 0\right)$$

must be $(\hat{Z}_2, -\hat{Z}_1, 0)$. Now both the \hat{X} and \hat{Z} vectors of the viewpoint coordinate system are determined. The \hat{Y} is obtained by crossing \hat{Z} into \hat{X} . The direction cosine matrix has the following form.

$$\begin{bmatrix} Z(2)/XNORM & -Z(1)/XNORM & 0.0 \\ Z(1)*Z(3)/XNORM & Z(2)*Z(3)/XNORM & -XNORM \\ Z(1) & Z(2) & Z(3) \end{bmatrix}$$

where XNORM is $|\vec{N}|$, the length of \vec{N} .

4.13 SUBROUTINE HIDE

a. Purpose

The purpose of HIDE is to determine if a point is being hidden by another polygon. The subroutine corresponds with subroutine HYDE (HYDE checks ellipsoids).

b. Subroutines Called

DOT, MAT, TPOINT, TRANS1

c. Labeled Common Blocks Used

ELLIPSE, POLYGON

d. Input or Argument Parameters

KK -- Polygon number to check blocking.

P3 -- Contains position vector of point to check.

e. Optional Output

None

f. Procedure

The subroutine first determines if the projected point and the projected polygon overlap. If the projected point is outside of the projected polygon, the point cannot be hidden by the polygon being examined. If the projected point does lie within the projected polygon, it must be determined which is closer to the viewpoint. If the point is closer than the polygon, that point is not hidden by the polygon being examined. Appendix C,

"Intersection of a Three Space Vector and Plane," describes in detail how to determine whether the plane or point is closer to the viewpoint.

The overlap on the projection plane of a projected point and a projected polygon is determined by subroutine TPOINT. TPOINT returns a flag called IFLAG that indicates overlap or no overlap.

4.14 SUBROUTINE HYDE

a. Purpose

The purpose of HYDE is to determine if a point is hidden by an ellipsoid. If the point is hidden, variable IFLAG is returned as one; if not hidden, IFLAG is set to two.

b. Subroutines Called

ABS, SQRT, DOT, DOTT, MAT, XYZ, YZ, Z

c. Labeled Common Blocks Used

ELLIPSE

d. Input or Argument Parameters

N -- Possible hiding ellipsoid number (I)

R -- Vector to plotting point (I)

e. Optional Output

f. Procedure

The equations used by subroutine HYDE (and accompanying subroutines XYZ, YZ, and Z) can be found in Appendix A, "Hidden Line Problem Between Two Ellipsoids." Refer to this appendix for further information on HYDE.

4.15 SUBROUTINE INPUT

a. Purpose

INPUT has two separate functions. The first is to read initial data from the input control file, read polygon data from the ATB input file, and to initialize variables. This is all done on the first call. The second function, performed on all subsequent calls, is to read ellipsoid data from the ATB input file.

b. Subroutines Called

DOT, DRCYPR, GENDCM

c. Labeled Common Blocks Used

ATB, CONECT, DBUG, ELLIPSE, INTERS, PLTT, POLYGON, REMOVE, VIEWP

d. Input or Argument Parameters

CTIME -- Current time of program passed from main.
Input Cards -- 6.0, 6.1, 7.0, 7.1, 7.2, 8,0, 9.0 10.0,
11.0, 12.0, 13.0, 14.0, 15.0, 15.1

e. Optional Output

f. Procedure

During the first call, cards 6.0, 6.1, 7.0, 7.1, 7.2, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, and 15.1 are read from the input control file. Polygon data are read from the ATB input file. The direction cosine matrix is initialized in three different ways, depending on the input flag ICODE. When ICODE equals zero, the roll, pitch, and yaw angles are found in the RA array (card 15.0); and subroutine DRCYPR calculates the direction cosine matrix. When ICODE equals one, the direction cosine matrix is supplied as input (card 15.1). When ICODE is equal to two, subroutine GENDCM generates the direction cosine matrix. The subroutine exits.

On all subsequent calls, INPUT starts at FORTRAN statement #600. Segment data are read from the ATB input file. This reading is continued until the time of the data is greater than or equal to the current time of the program (CTIME). When this time is reached, the current location of the contact ellipsoid is calculated. If the time interval of the ATBM simulation data is greater than the DT of the view run, variable IFLAG is set to ten. This is done to signal the program to continue incrementing CTIME without making plots until CTIME reaches the next available time point in the simulation data. The subroutine then exits.

4.16 SUBROUTINE LSEGINT

a. Purpose

LSEGINT is called by subroutine OVERLAP to check for two lines intersecting. The line segments are represented by two end points for each line.

b. Subroutines Called

None

c. Labeled Common Blocks Used

None

d. Input or Argument Parameters

- P1 -- X and Y coordinates for line No. 1, end point No. 1
- P2 -- X and Y coordinates for line No. 1, end point No. 2
- R1 -- X and Y coordinates for line No. 2, end point No. 1
- R2 -- X and Y coordinates for line No. 2, end point No. 2

e. Optional Output

None

f. Procedure

LSEGINT checks for six separate cases:

Case 1 -- Regular configuration

Case 2 -- One line is vertical

Case 3 -- Both lines are vertical

Case 4 -- Both lines are horizontal

Case 5 -- Both lines have the same nonzero slope

Case 6 -- One line is vertical, the other is horizontal

It first checks for Cases 3 and 4. If either of these cases are true, the subroutine returns. For Cases 1, 2, 5, and 6, refer to Appendix D, "Intersection of Line Segments in a Plane." The code of subroutine LSEGINT follows the equations and text found in the appendix.

4.17 SUBROUTINE MAT

a. Purpose

Performs the matrix multiple C = AB.

b. Subroutines Called

None

c. Labeled Common Blocks Used

None

d. Input or Argument Parameters

A -- Matrix of Size (LL,MM)

B -- Matrix of Size (MM,NN)

C -- Product Matrix of Size (LL,NN)

LL, MM, NN -- Sizes of Matrices A, B, C

JA, JB, JK -- First Dimension of A, B, C in Calling

Subroutine

e. Optional Output

None

f. Procedure

Each element (C(I,J)) of the product matrix C is computed by:

$$C(I,J) = \sum_{K=1}^{MM} A(I,K) * B(K,J)$$
 for $I = 1$, LL and $J = 1$, NN

4.18 SUBROUTINE NFRAME

a. Purpose

NFRAME performs all end of frame operations necessary for a Grinnell graphics system. The code furnished in this version of the VIEW program is for a Perkin-Elmer 3242 running under 0S/32.

b. Subroutines Called

DOLWH, PLOTS

c. Labeled Common Blocks Used

None

d. Input or Argument Parameters

None

e. Optional Output

None

f. Procedure

Again, this subroutine is designed for a Perkin-Elmer 3242 computer and a particular graphics system, a Grinnell GMR-27. If a different graphics system is to be utilized, this subroutine will need to be changed. Immediately upon entering NFRAME, subroutine DOLWH is called. DOLWH stands for digital output with handshake. An end-of-frame halfword (FFFF) is output to the Grinnel system. Subroutine PLOTS is called to initialize the next frame. The subroutine then exits.

4.19 SUBROUTINE OVERLAP

a. Purpose

This subroutine is called by BUILDIE to check two objects for overlap. The objects are defined by the first two arguments in the call to OVERLAP. At the point where OVERLAP is called, all objects have a projected polygon representation, and OVERLAP determines if these two polygons overlap.

b. Subroutines Called

LSEGINT, TPOINT

c. Labeled Common Blocks Used

POLYGON .

d. Input or Argument Parameters

III -- Object No. 1 to be Tested

KKK -- Object No. 2 to be Tested

e. Optional Output

None

f. Procedure

There are two basic checks employed by this subroutine to determine object overlap. First is the POINT INSIDE A POLYGON TEST. This test starts with a point, usually a corner of a polygon, and tests are made to see if that point lies inside or outside the polygon. Once a point is found to be within the other polygon, MFLAG is set equal to 1 to indicate object overlap, and OVERLAP returns to the calling program. If no points lie inside the polygons being tested, the INTERSECTING LINE SEGMENT TEST is used. This test checks for line segments of one polygon intersecting line segments of the other polygon. Again, if intersection is found, MFLAG is set equal to 1, and OVERLAP returns to BUILDIE. If no intersection is found, the two objects must not overlap, and MFLAG is set equal to 0 and OVERLAP returns to BUILDIE.

4.20 SUBROUTINE PLPLN

a. Purpose

This subroutine is called by the Main program to set up arrays containing polygon data for subroutine PNTPLT to plot.

b. Subroutines Called

NEWPEN, PNTPLT

c. Labeled Common Blocks Used

DBUG, ELLIPSE, PLTT, POLYGON, REMOVE

d. Input or Argument Parameters

SEG -- Array containing vectors representing sides of the polygons.

INDEX2 -- Array size for SEG.

e. Optional Output

None

f. Procedure

Array SEG must have the vectors that represent the sides of the polygons. Each side of the polygon is represented by a series of short vectors, even though one long vector could be plotted. A series of short vectors is used so current algorithms can be used for the hidden line segment problem. The vectors in array SEG are in the inertial reference frame. After loading data into SEG, it is sent to subroutine PNTPLT to plot. After doing this for all planes, PLPLN exits.

4.21 SUBROUTINE PNTPLT

a. Purpose

The purpose of PNTPLT is to plot all the points passed to it in array SEG. PNTPLT is called by subroutines PSE to plot

ellipsoids and by PLPLN to plot polygons. PNTPLT is where all calls to the Calcomp plotting subroutines are made.

b. Subroutines Called

CLIP, EXTEND, HIDE, HYDE, PLOT, PREPLT, TRANS1

c. Labeled Common Blocks Used

ELLIPSE, INTERS, PLTT

d. Input or Argument Parameters

SEG -- Array containing points to be plotted.

IPEN -- Calcomp pen control variable.

INDEX2 -- Maximum number of points to plot.

NPTS -- Number of points to plot.

.CARD 16.0 -- XMIN, XMAX from input control file.

e. Optional Output

None

f. Procedure

PNTPLT takes each point and checks to see if the point is hidden. This is accomplished by calling subroutine HYDE to check for possible blocking ellipsoids and by calling subroutine HIDE to check for possible blocking polygons. After it is determined that the point is or is not hidden, PNTPLT checks to see if a boundary is crossed by the vector originating on the last point and ending on the current point. A boundary is indicated whenever the state of the last point and the current point is different. If the last point was not hidden and the current point is hidden, the vector goes from a not hidden zone into a hidden zone. The boundary between the two zones is the boundary

that is checked for at this stage of subroutine PNTPLT. If a boundary is present, subroutine EXTEND is called to extend a new vector from the not hidden point up to the boundary. This new vector is in the same direction as the vector that crosses the boundary.

Once a nonhidden vector is established, subroutine TRANS1 is called to transform the vector into the viewpoint reference frame. Subroutine PNTPLT projects the vector that is now in the viewpoint system. This projection is similar to the projection of a lens onto a projection plane and is represented by the following equations:

$$X' = \frac{(SFACTOR) * (X)}{Z}$$

$$Y' = \frac{(SFACTOR) * (Y)}{Z}$$

where X' and Y' are the plotting coordinates on the projection plane.

X, Y, Z are the coordinates of the position vector in the viewpoint coordinate system.

SFACTOR is the scale factor for the plot.

Once the plotting coordinates of the vector have been calculated, the X and Y coordinates are checked to see if the plot move will take the pen off the boundaries of the plotter. The X coordinate is compared to the variables XMIN and XMAX and the Y coordinate is compared to YMIN and YMAX. These variables represent the bottom, top, left, and right boundary values of the plotting region and are defined in subroutine. If X = Y coordinate is off the plotter, subroutine CLIP is called to compensate for what the pen was to have done. The X and Y coordinates of this intended pen move are saved and the pen variable is set to lift (IPEN = 3) to prevent any drawing until

the pen returns to the plotting region. If the X and Y coordinates were in the plotting region, subroutine PREPLT is called. PREPLT completes any pen moves made during clipping. The Calcomp subroutine PLOT is then called to perform the pen move or draw.

4.22 SUBROUTINE POLYD

a. Purpose

The purpose of POLYD is to generate direction cosine matrices for all polygons.

b. Subroutines Called

CROSS, SQRT

c. Labeled Common Blocks Used

ELLIPSE, POLYGON

d. Input or Argument Parameters

None

e. Optional Output

None

f. Procedure

POLYD generates a direction cosine matrix for all polygons in View. The approach taken here is simply to cross two adjacent sides of the polygon to obtain the normal to the polygon surface—this is one coordinate vector. One of the sides used in the cross product is picked as another coordinate vector. The

third coordinate vector is obtained by crossing the first two. A direction cosine matrix is obtained by placing these three vectors in a matrix. (For the following equations, see Figure 4.3.)

$$r_1 = P_2 - P_1 \times P_3 - P_1$$

$$\hat{r}_1 = \frac{\vec{r}_1}{|\vec{r}_1|} = a_1 X + b_1 Y + c_1 Z$$

$$\hat{r}_2 = \frac{\overline{P_2 - P_1}}{|P_2 - P_1|} = a_2X + b_2Y + c_2Z$$

$$\hat{r}_3 = \hat{r}_1 \times \hat{r}_2 = a_3 X + b_3 Y + c_3 Z$$

The direction cosine matrix is given by

$$\underline{D} = \begin{bmatrix} \hat{X} & \hat{r}_1 & \hat{Y} & \hat{r}_1 & \hat{Z} & \hat{r}_1 \\ \hat{X} & \hat{r}_2 & \hat{Y} & \hat{r}_2 & \hat{Z} & \hat{r}_2 \\ \hat{X} & \hat{r}_3 & \hat{Y} & \hat{r}_3 & \hat{Z} & \hat{r}_3 \end{bmatrix}$$

Figure 4.3 Pictorial Representation of Equations in POLYD

Since $\hat{X} \cdot \hat{Y} = 0$ and $\hat{X} \cdot \hat{Z} = 0$ and $\hat{Y} \cdot \hat{Z} = 0$

This direction cosine matrix can be used to transform from the inertial reference system to the local reference system.

4.23 SUBROUTINE PREPLT

a. Purpose

The purpose of this subroutine is to position the pen before a call to PLOT with pen down if that move would cause the pen to exceed the specified plotting region. The correct position for the pen is at the point denoted by the coordinates of an X or Y intercept between saved and present points at the X or Y boundary, and the X or Y boundary (Figure 4.4).

b. Subroutines Called

PLOT, XINTCP, YINTCP

c. Labeled Common Blocks Used

None

d. Input or Argument Parameters

X -- X coordinate of present pointY -- Y coordinate of present point

Figure 4.4 Figure for Variables in PREPLT

XSAV -- X coordinate of previous point

YSAV -- Y coordinate of previous point

XMIN -- X coordinate of left side of plotting region

XMAX -- X coordinate of right side of plotting region

YMIN -- Y coordinate of bottom of plotting region

YMAX -- Y coordinate of top of plotting region

IPEN -- Calcomp pen control value

NEWPEN -- Saved value of previous IPEN move

e. Optional Output

None

f. Procedure

The method in which PREPLT knows if the previous draw was across the border is a combination of two reasons. The first is the fact that the subroutine is being called. That is, the program flow of subroutine PNTPLT (the only subroutine that calls PREPLT) will only call PREPLT if the present X and Y coordinates are on the plotter. The second reason is determined by checking flag NEWPEN. NEWPEN is a variable that has saved the previous pen move. It is also set to a negative value if the pen move was out of the plotting region. So, if NEWPEN is equal to -2 (negative meaning clipped, 2 meaning pen down), then we want to continue. If it is not equal to -2, the subroutine exits. If continued, PREPLT determines to which coordinates to move the pen. If the X coordinate is outside the valid plotting region, the Y coordinate is set to the Y intercept between the present and saved coordinates at the X boundary. If the X coordinate is inside the valid plotting region, the Y coordinate is set to the Y boundary value. If the Y coordinate is outside the valid plotting region, the X coordinate is set to the X intercept value between the present and saved points at the Y boundary. If the Y coordinate was inside the valid plotting region, the X coordinate is set to the X boundary value. PREPLT moves the pen

(up) to this spot denoted by the just calculated X and Y coordinates. Variable IPEN is set to 2 and the subroutine exits.

4.24 SUBROUTINE PRJELR

a. Purpose

This subroutine projects ellipsoids onto the projection plane and circumscribes the projected shadow of the ellipsoid with a rectangle. This rectangle is used later in the program by the BUILDIE routine which checks for overlaps of objects on the projection plane. The information obtained from these operations is used by the hidden line routines to decrease computation time.

The PRJELR routine assumes that an ellipsoid projects onto the projection plane as an ellipse, but in general this is not the case. The assumption used in writing the VIEW program is that when the viewpoint is sufficiently far away from the subject and the viewpoint coordinate system is looking almost directly at the subject, all ellipsoids will project approximately as ellipses.

b. Subroutines Called

ABS, SQRT, DOT, DOTT, MAT, SOLVA, SOLVR

Approximately the property of the

er magnetic than the second of the contract of the second of the second

c. Labeled Common Blocks Used

ELLIPSE, POLYGON

d. Input or Argument Parameters

None

e. Optional Output

None

f. Procedure

Immediately upon entering, PRJELR checks the number of segments. If zero, the subroutine exits. If nonzero, it continues. The following procedure is done for each segment. The A array is transformed into the viewpoint reference frame. Subroutine SOLVR is called three times to get the vectors \vec{r}_1 , \vec{r}_2 , and \vec{r}_3 as described in Appendix B. Vectors \vec{r}_1 , \vec{r}_2 , and \vec{r}_3 are projected onto the projection plane. Subroutine SOLVA is called to get the coefficients of the ellipse matrix. Eigenvalues LAMDA1 and LAMDA2 are solved. The two Eigenvalues are constructed and normalized. The SIGN and CONVEC arrays are set up. After doing this procedure for each segment, the subroutine exits.

4.25 SUBROUTINE PRJPLY

a. Purpose

PRJPLY is called by the Main program to project polygons in three space to the two-dimensional space of the projection plane.

b. Subroutines Called

MAT

c. Labeled Common Blocks Used

ELLIPSE, POLYGON

d. Input or Argument Parameters

None

e. Optional Output

None

f. Procedure

PRJPLY works with one plane at a time and fills the POS, CONVEC, and SIGN arrays for that plane; then the next plane is used until all planes have been converted. A pictorial representation of the meaning of the vectors in the arrays is given in Figure 4.5. The projectors are given in the inertial reference frame. These vectors define the corners of the polygon in three space. These vectors are projected onto the projection plane, and the CONVEC array is generated. The CONVEC array consists of contour vectors of the projected polygon. The POS array contains a vector that defines one corner of the projected polygon from a coordinate system aligned with the viewpoint coordinate system. The SIGN array contains the result of CONVEC(1) crossed with CONVEC(2). The CONVEC and SIGN arrays are used by the BUILDIE block.

4.26 SUBROUTINE PSE

a. Purpose

This subroutine is called from the Main program to set up arrays containing semiellipsoid data for subroutine PNTPLT to plot. Subroutine PSE is called twice for each ellipsoid, once to plot its top half, the second time to plot the bottom half.

SIGN = CONVEC (1) X CONVEC (2)

Figure 4.5 Meaning of Vectors in Arrays in PRJPLY

b. Subroutines Called

PNTPLT

c. Labeled Common Blocks Used

None

d. Input or Argument Parameters

X1 -- Semiellipsoid contour array.

IN -- Number of points in each quarter contour saved in array X1.

SEG -- Array containing a complete contour.

INDEX -- Number of steps plus one.

INDEX2 -- Maximum number of points any complete contour can

IHALF -- Flag controlling which ellipsoid half is to be plotted.

IHALF = 1, semiellipsoid with X > 0 is plotted.

IHALF = 2, semiellipsoid with X < 0 is plotted.

e. Procedure

Contours are plotted in sequence starting with the contour that is represented by just a point (i.e., Y = 0, Z = 0, X > 0) until all contours have been plotted. The last point plotted is represented by a point (i.e., Y = 0, Z = 0, X < 0).

4.27 SUBROUTINE ROT

a. Purpose

Computes rotation matrix \underline{A} for angle TH about X, Y, or Z axes as L = 1, 2, or 3.

b. Subroutines Called

COS, SIN

c. Labeled Common Blocks Used

None

d. Input or Argument Parameters

A -- 3 × 3 rotation matrix to be computed.

L -- 1, 2, or 3 indicating rotation about X, Y, or Z axes, respectively.

TH -- Angle of rotation θ , in radians.

e. Optional Output

None

f. Procedure

1. For L = 1, computes

$$\underline{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{pmatrix}$$

2. For L = 2, computes

$$\underline{A} = \begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix}$$

3. For L = 3, computes

$$\underline{\mathbf{A}} = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Note: Special tests are performed to insure that $\cos \theta$ and $\sin \theta$ are exactly 0 or ± 1 for values of θ that are multiples of $\frac{\pi}{2}$ to correct for small errors introduced by the SIN and COS routines.

4.28 SUBROUTINE SOLVA

a. Purpose

SOLVA solves three equations simultaneously and returns the components of $[\alpha]$. See Appendix B, "Discussion of Equations Used by PRJELR" for more information.

b. Subroutines Called

None

c. Labeled Common Blocks Used

None

d. Input or Argument Parameters

R -- Contains values of r_1 , r_2 , and r_3 on the projection plane.

AA11 -- α_{11} component of $[\alpha]$

AA22 -- α_{22} component of $[\alpha]$

AA12 -- α_{12} component of $[\alpha]$

e. Optional Output

None

f. Procedure

See Appendix B, "Discussion of Equations Used by PRJELR" for procedural information.

4.29 SUBROUTINE SOLVR

a. Purpose

SOLVR solves a set of simultaneous equations to find the components of vector \vec{r} that satisfy the properties needed to determine the equation of the projected ellipse. For more information, refer to Appendix B, "Discussion of Equations Used by PRJELR."

b. Subroutines Called

SQRT

c. Labeled Common Blocks Used

None

d. Input or Argument Parameters

CALL SOLVR (A₁, A₂, A₃, A₄, A₅, A₆, A₇, A₈, SS, R1, R3)

Case No. 1

$$A_1 = A'_{11}$$

Case No. 2
 $A_1 = A'_{12}$

Case No. 3
 $A_1 = A'_{11} + A'_{12}$
 $A_2 = A'_{21}$
 $A_2 = A'_{22}$
 $A_2 = A'_{21} + A'_{22}$

$$A_{3} = A'_{31}$$
 $A_{3} = A'_{32}$
 $A_{4} = A'_{13}$
 $A_{5} = A'_{23}$
 $A_{6} = A'_{23}$
 $A_{7} = A'_{11}$
 $A_{8} = A'_{22}$
 $A_{8} = A'_{11}$
 $A_{8} = A'_{22}$
 $A_{8} = A'_{13}$
 $A_{8} = A'_{23}$
 $A_{8} = A'_{13}$
 $A_{9} = A'_{11}$
 $A_{10} = A'_{11}$
 $A_{11} = A'_{11}$
 A_{11

e. Optional Output

None

f. Procedure

Refer to Appendix B, "Discussion of Equations Used by PRJELR" for procedural information.

4.30 SUBROUTINE TITLE

a. Purpose

The purpose of this subroutine is to read the title data cards and write them to the plot file.

b. Subroutines Called

NEWPEN, NFRAME, PLOT, SYMBOL

c. Labeled Common Blocks Used

DBUG

d. Input or Argument Parameters

Input cards 2.0 and 2.1 (20)

e. Optional Output

None

f. Procedure

After initializing some variables, the pen is moved (up) to point 0,0 and is defined as the origin. Data card 2.0 is read. If number of title frames equal to zero, the subroutine returns. The following procedure is repeated for each title frame. The set of 20 data card 2.1's are read in and SYMBOL is called to write them to the plot file. Depending on the value of DEVFLG, either PLOT or NFRAME is called to ready the plot file for the first flame. After doing all the frames, the subroutine exits.

4.31 SUBROUTINE TPOINT

a. Purpose

This subroutine tests a point against a polygon, both being on the projection plane. The results of the tests indicate if the point lies inside or outside of the polygon. IN is a flag that is returned to the calling program to indicate the final result.

b. Subroutines Called

None

c. Labeled Common Blocks Used

POLYGON

d. Input or Argument Parameters

PP2 -- Point on the projection plane.

I -- Polygon number on the projection plane.

IN -- Flag returned telling if point was inside (IN=1) or outside (IN=2) polygon.

e. Optional Output

None

f. Procedure

The test used is called the CROSS PRODUCT TEST (see Figure 4.6). This name is appropriate since the test is based upon the sign of the result of a cross product between two vectors on the projection plane. One vector represents a side of the polygon, and the other vector always extends from the base of the side vector to the point being tested. Examples of these vectors are given in Figure 4.6. The vector that is represented by points AB is crossed into the vector represented by points AE. This process is continued until all sides have been crossed with a vector to the point being examined. In the case of point number 2, the following cross products would be examined.

Figure 4.6 Cross-Product Test with Convex Polygon in TPOINT

$$\overrightarrow{AB} \times \overrightarrow{AE}$$
, $\overrightarrow{BC} \times \overrightarrow{BE}$, $\overrightarrow{CD} \times \overrightarrow{CE}$, $\overrightarrow{DA} \times \overrightarrow{DE}$

Notice that the first cross product gives a different sign than the second. If a point is outside the polygon, there must be a change in the resulting sign of the cross products. If the point is inside the polygon, the following cross products need to be examined.

$$\overrightarrow{AB} \times \overrightarrow{AF}$$
, $\overrightarrow{BC} \times \overrightarrow{BF}$, $\overrightarrow{CD} \times \overrightarrow{CF}$, $\overrightarrow{DA} \times \overrightarrow{DF}$

Notice that all cross products have the same sign. This will be true for any polygon except for concave polygons. In the case of concave polygons (see Figure 4.7), even though the point is inside the polygon, the test would indicate that the point was outside the polygon because there is a sign change between

$$\overrightarrow{AB} \times \overrightarrow{AE}$$
 and $\overrightarrow{BC} \times \overrightarrow{BE}$

Figure 4.7 Cross-Product Test with Concave Polygon in TPOINT

Therefore, concave polygons are ruled out. Concave polygon shapes can be included only when that concave polygon is represented by convex polygons.

4.32 SUBROUTINE TRANS1

a. Purpose

The purpose of TRANS1 is to transform the input vector \vec{R} into the viewpoint reference frame.

b. Subroutines Called

DOTT, MAT

c. Labeled Common Blocks Used

ELLIPSE, VIEWP

d. Input or Argument Parameters

R -- Input vector.

P -- Output vector (input vector transformed to Viewpoint Reference Frame).

e. Optional Output

None

f. Procedure

The vectors used by TRANS1 are shown in Figure 4.8. The output of TRANS1 is vector \vec{P} in the Viewpoint Reference Frame. The other vectors are in the reference frame as specified below.

 \vec{R} in Local Reference Frame of Ellipsoid. This vector is a position vector for surface points of an ellipsoid, and it originates at the center of the ellipsoid.

SEGLP in Inertial Reference Frame. This vector is a position vector for the center of the contact ellipsoid associated with \vec{R} .

 \overrightarrow{VP} in the Inertial Reference Frame. This vector is a position vector for the origin of the Viewpoint Coordinate System.

 \vec{P} can be found from vectors \vec{R} , \vec{SEGLP} , and \vec{VP} once they are all in the Viewpoint Reference Frame. The following equations transform these vectors into the Viewpoint Reference Frame.

,,,,,

Figure 4.8. Vectors Used by TRANS1

$$\overrightarrow{R2} = [\underline{DVP}] [\underline{D}^{\mathsf{T}}] \overrightarrow{R}$$

$$\overrightarrow{SEGLP2} = [\underline{DVP}] \overrightarrow{SEGLP}$$

$$\overrightarrow{VP2} = [DVP] \overrightarrow{VP}$$

Note: [DVP] is the direction cosine matrix that transforms from the inertial to the viewpoint frame of reference.

[D] is the direction cosine matrix that transforms from the inertial to the viewpoint frame of reference.

Then \vec{P} is given by

 $\vec{P} = \vec{SEGLP2} + \vec{R2} - \vec{VP2}$

IF IELP is greater than 30, TRANS1 must work with a vector on a polygon and not an ellipsoid. The vectors that define the sides of the polygon are always in the Inertial Reference Frame; therefore, \underline{DVP} is placed in \underline{DD} matrix, and the same equations are used to find \overrightarrow{P} .

4.33 FUNCTION XINTCP

a. Purpose

The purpose of XINTCP is as follows: given two sets of X and Y coordinates and a Y coordinate that falls between them, XINTCP calculates the X coordinate at the given Y value.

b. Subroutines Called

None

c. Labeled Common Blocks Used

None

d. Input or Argument Parameters

X -- X coordinate of end point No. 1.

Y -- Y coordinate of end point No. 1.

XSAV -- X coordinate of end point No. 2.

YSAV -- Y coordinate of end point No. 2.

YTEMP -- Y coordinate of the point at which the

Y coordinate of the point at which the caller wants the X coordinate.

e. Optional Output

None

f. Procedure

XINTCP has two input pairs of coordinates. In this discussion they will be referred to the saved (XSAV, YSAV) and present (X,Y) coordinates (see Figure 4.9). XINTCP first calculates the differences between the saved and present X and Y coordinates. These differences are called X1 and Y1. It then calculates the scaling factor SFACTR as

X1 YT

If Y1 is equal to zero, PFACTR is set to zero. The difference between the saved and intercept Y value is calculated (Y2). This difference is multiplied by PFACTR and added to the saved X value. This is the X intercept value. It is set equal to XINTCP and the function returns.

4.34 SUBROUTINE XYZ

a. Purpose

XYZ solves the equation for an ellipse to find a point on that ellipse that will return a vector. It is used when M_1 and M_2 are not equal to zero. Refer to Appendix A, "Hidden Line Problem Between Two Ellipsoids."

Figure 4.9. Variables Used by XINTCP

b. Subroutines Called

SQRT

c. Labeled Common Blocks Used

None

d. Input or Argument Parameters

MU -- A -- B -- See Appendix A equations for definitions.
C -- S -- M -- Flag passed back as either zero when equation solved or one when not solved.

e. Optional Output

None

f. Procedure

Follow equations in Appendix A for procedural information.

4.35 FUNCTION YINTCP

a. Purpose

The purpose of YINTCP is as follows: given two sets of X and Y coordinates and an X coordinate that falls between them, YINTCP calculates the Y coordinate at the given X value.

b. Subroutines Called

None

c. Labeled Common Blocks Used

None

d. Input or Argument Parameters

X -- X coordinate of point No. 1.Y -- Y coordinate of point No. 1.

XSAV -- X coordinate of point No. 2.

YSAV -- Y coordinate of point No. 2.

XTEMP -- X coordinate of the point at which the caller wants the Y coordinate.

e. Optional Output

None

f. Procedure

YINTCP has two input pairs of coordinates. In this discussion they will be referred to as the present (X,Y) and saved (XSAV, YSAV) coordinates (see Figure 4.10). YINTCP first calculates the differences between the present and saved X and Y coordinates. These differences are called X1 and Y1. It then calculates the scaling factor SFACTR as

Y1 X1

If Y1 is equal to zero, PFACTR is set to zero. The difference between the saved and intercept X values is calculated (X2). The difference (X2) is multiplied by PFACTR and added to the saved Y coordinate. This is the Y intercept value. It is set equal to YINTCP and the function returns.

Figure 4.10. Variables used by YINTCP

4.36 SUBROUTINE YZ

a. Purpose

YZ solves the equation for an ellipse to find a point on that ellipse that will return a vector. Is used when $M_1=0$ and $M_2=0$. Refer to Appendix A, "Hidden Line Problem Between Two Ellipsoids."

b. Subroutines Called

SQRT

c. Labeled Common Blocks Used

None

d. Input or Argument Parameters

MV --A --B --C --S --M --JFLAG --Flag passed back as either zero when equation solved or one if not solved.

e. Optional Output

None

f. Procedure

Follow equations in Appendix A for procedural information (Case No. 2).

4.37 SUBROUTINE Z

a. Purpose

Z solves the equation for an ellipse to find a point on that ellipse that will return a vector. Is used when both $\rm M_1$ and $\rm M_2$ are equal to zero. Refer to Appendix A, "Hidden Line Problem Between Two Ellipsoids."

b. Subroutines Called

SQRT

c. Labeled Common Blocks Used

None

d. Input or Argument Parameters

MV --A --B --C --S --M --JFLAG --Flag passed back as either zero when equation solved or one if not solved.

e. Input or Argument Parameters

None

f. Procedure

Follow equations in Appendix A for procedural information (Case No. 1).

5.0 VIEW PROGRAM FLOWCHARTS

Contained in this section are the flowcharts for selected program modules. They are not direct, line-by-line flowcharts, but more of a general flow description of critical program modules.

5.1 VIEW MAIN

5.2 BUILDIE

5.4 CONVREC

5.9 INPUT

5.11 OVERLAP

6.0 VIEW PROGRAM VARIABLE GLOSSARIES BY PROGRAM MODULE

This section contains lists of selected variables contained in VIEW. The lists contain all pertinent variables and exclude temporary variables such as DO loop indices and intermediate, calculated variables. This section is organized in the following manner; common block variables, main program variables, and variables for each subroutine, subroutines in alphabetical order. The variables for all common blocks have been combined and listed in alphabetical order. For which common block the variable belongs, see Section 7, cross-reference Chart 7.3. The variable descriptions are alphabetized within each subroutine. The variable description consists of the variable name; its dimension, if any; FORTRAN data type; and a short description.

6.1 COMMON BLOCK VARIABLE DEFINITIONS

A(3,3,30)

Real Array. Contains the ellipsoid matrices used in the following equation:

 $\vec{r} \cdot [A] \vec{r} = 1$

BDRS

Integer scalar. Constant that represents a particular graphics output system. Used with DEVFLG. Initialized in Main.

CONVEC(2,5,90)

Real array. Contains vectors on the projection plane that represent the projected polygons and rectangles that circumscribe projected ellipsoids on the projection plane. Initialized in subroutine PRJPLY.

D(3,3,90)

Real array. Contains directional cosine matrices for segments (third subscript value 1-30) and polygons (31-90). Data for the segments is read from the ATB input file in subroutine INPUT and data for polygons is initialized in subroutine POLYD. Transforms from the inertial coordinate system to the local geometric coordinate system of the segment.

DEVFLG

Integer scalar. Represents VIEW program output device number. Read from input control file in Main.

DVP(3,3)

Real array. Contains the direction cosine matrix for the viewpoint coordinate system that transforms from the inertial reference system to the viewpoint coordinate system. Initialized in subroutine INPUT and modified in Main.

DVPØ(3,3)

Real array. Contains the original direction cosine matrix that transforms from the segment reference system to which the viewpoint is attached, to the viewpoint coordinate system. Initialized in subroutine INPUT.

ICOLOR (91)

Integer array. Contains color numbers for each ellipsoid (subscript values 1-30), polygon (31-90) and title (91). Read from input control file in subroutine INPUT.

IDEBUG(80)

Integer array. Contains debugging printer control flags. Read from input control file in Main.

IE(90,90)

Integer array. Contains object numbers that overlap with a given object. Second subscript values 1-30 represent ellipsoids, 31-90 represents polygons. Initialized in subroutine BUILDIE.

IELP

Integer scalar. Represents ellipsoid or polygon that is currently being plotted. Initialized and modified in Main and subroutine PLPLN.

IFLAG

Integer scalar. Flag indicating state of subroutine INPUT. Initialized and modified in Main and INPUT.

INT

Integer scalar. Number of iterations used in subroutine EXTEND for finding the edge of a hidden line segment. INT = 4 is recommended. Read from input control file in subroutine INPUT.

IREMOV(30)

Integer array. Contains numbers that represent polygons to be removed from View program output. Read from input control file in subroutine INPUT.

IVP

Integer scalar. Segment number representing ellipsoid, vehicle, or ground to which the viewpoint and focal point are attached.

MPL(3,5,60)

Integer array. Contains segment and ellipsoid identification numbers for each plane segment contact as defined in the ATB program. MPL is read in from both the ATB input file and the input control file.

NIE (90)

Integer array. Contains the number of overlapping ellipsoids and polygons for a given ellipsoid or polygon. Subscript values 1-30 represent ellipsoids, 31-90 represent polygons. Initialized in subroutine BUILDIE.

NISG

Integer scalar. Defines the reference frame for unattached planes. Read from input control file in subroutine INPUT.

NP

Integer scalar. Represents the number of ATB input polygons. Read from ATB input file in subroutine INPUT.

NPLANE

Integer scalar. Represents total number of polygons (ATB input plus VIEW input planes). Initialized in subroutine INPUT.

NPPP (90)

Integer array. Contains number of points per polygon. This equals number of sides plus one. Initialized in subroutine PRJELR for rectangles about ellipsoids and read from input control file in subroutine INPUT for polygons.

NPREM

Integer scalar. Represents the number of polygons to be removed from plot output. Read from input control file in subroutine INPUT.

NSEG

Integer scalar. Total number of segments read from ATB input file in subroutine INPUT.

NSTEPS (90)

Integer array. Contains number of steps (grid points along an axis) for each ellipsoid and polygon. In the case of the polygons, NSTEPS represents the number of vectors on any one side of the polygon. Read from input control file in subroutine INPUT.

Integer scalar. Constant that represents OFLINE off-line condition. Used with DEVFLG. Initialized in Main. Real scalar. Offset variable to move OFSETX plot in X direction on the plotting area. Read from input control file in subroutine INPUT. **OFSETY** Real scalar. Offset variable to move plot in Y direction on the plotting area. Read from input control file in subroutine INPUT. ONLINE Integer scalar. Constant that represents online condition. Used with DEVFLG. Initialized in Main. P(3,4,60)Real array. Contains vectors that represent the polygon sides in the inertial reference frame. Initialized in subroutine CONVREC. PL(17,30) Real array. Contains polygon parameters for ATB input polygons. Read from ATB input file. POS(2,90) Real array. Contains position vectors for the polygons represented by the CONVEC array. These position vectors originate from the viewpoint origin on the projection plane to a corner of the polygon stored in the CONVEC array. POS vectors are in the viewpoint coordinate system. POS is initialized in subroutine PRJPLY. PO(3,4,60) Real array. Contains position vectors of the polygon vertices in reference to the MPL coordinate system. ATB input polygons are initialized in subroutine CONVREC, and VIEW input polygons are read from input control file in subroutine INPUT.

RA(3)

Real array. Contains three different kinds of data depending on the value of ICODE. These data are:

ICODE = 0 Roll, pitch, and yaw angles are supplied in RA array. Initialized in subroutine DRYCYPR.

ICODE = 1 Direction cosine matrix supplied as input. The RA array is the first row of the direction cosine matrix. The second and third rows are on the next record. This data is read from the input control

file in subroutine

ICODE = 2 Point at which viewpoint Z-axis to aim is supplied in the RA array. Read from input control file in subroutine INPUT.

INPUT_

Real array. Contains position vectors for ellipsoids and polygons. These vectors go from the inertial reference origin to the center of the contact ellipsoid. In the case of a polygon, this vector points to one corner of the polygon. SEGLP is in the inertial reference frame. It is read from the ATB input file in subroutine INPUT.

Real scalar. Reprsents scale factor for plot. Is the Z coordinate of the projection plane in the viewpoint reference frame. Read from input control file in subroutine INPUT.

Real array. Contains cross product of side 1 and side 2 of a polygon. Initialized in subroutine PRJPLY.

Integer scalar. Constant that represents terminal as output device. Used with DEVFLG. Initialized in Main.

Real scalar. Time (seconds) of the current segment data set. Read from ATB input file in subroutine INPUT.

Real array. Position vector for the viewpoint coordinate system. This vector is in the inertial reference frame. Read from input control file in subroutine INPUT and modified in Main.

SEGLP(3,90)

SFACTR

SIGN(90)

TERM

TIME

VP(3)

VPO(3)

Real array. Contains the coordinates of the viewpoint in the coordinate system to which the viewpoint is attached. These are the original values read into array VP. Initialized in subroutine INPUT.

VP2(3)

Real array. Contains the viewpoint position vector in the viewpoint coordinate system.

ZTIME

Double precision scalar. Represents time of current data set (TIME) rounded to the nearest microsecond. This was done in order to get equal comparisons between input data time and program calculated time. Modified in subroutine INPUT.

6.2 MAIN PROGRAM

CTIME

Double precision scalar. Represents current time of the program rounded to the nearest microsecond.

DTIME

Double precision scalar. Represents delta time or what time step value CTIME will be incremented. Read from record 4.0 of input control file.

ETIME

Double precision scalar. Represents end time of the program. Read from record 4.0 of input control file.

ID(10)

Real array. Contains 40 character title strip. Read from record 3.0 of input control file.

LUPLOT

Integer scalar. Represents logical unit number for the output plotting file.

NF

Integer scalar. Frame counter that is written every frame to output list file.

STIME

Double precision scalar. Represents start time of the program or when to begin plotting. Read from card 4.0 of input control file.

XTIME

Real scalar. Temporary variable that is the current program time expressed in milliseconds for plotting. WORK (10000)

Real array. Temporary array space allocated for subroutines ELIPSN, PSE, and PLPLN.

6.3 SUBROUTINE BUILDIE

IOBJ

Integer scalar. Equal to present object

number plus one.

KPLANE

Integer scalar. Equal to total number of

polygons plus 30.

MFLAG

Integer scalar. Flag passed back from subroutine OVERLAP telling whether or not

there is a overlap condition.

MPLANE

Integer scalar. Equal to total number of

polygons plus 29.

6.4 SUBROUTINE CLIP

IPEN

Integer scalar. Calcomp pen value passed

through argument list from subroutine

PNTPLT.

IPLOT

Integer scalar. Flag that tells CLIP if

last pen move was clipped (IPLOT=0), or

plotted (IPLOT=1).

LCALL

Integer scalar. Flag that tells CLIP if last call to CLIP was a pen up to first point in line. LCALL=0 means it was.

LCALL=1 means that it was not.

Χ

Real scalar. X coordinate of point to be

plotted passed through argument list from

PNTPLT.

XLIMIT

Real scalar. If X coordinate off

plotting region, this variable contains value of which boundary (left or right)

it is off.

XLSAV

Real scalar. X coordinate of first point

in line that was clipped in last call to

CLIP.

XLTEMP

Real scalar. Value of X coordinate to

move to if previous call to CLIP was a

pen up to first point in segment.

Real scalar. Constant that represents XMAX right side X limit of plotting region. Read from record 16.0 in input control file. MIMX Real Scalar. Constant that represents left side X limit of plotting region. Read from record 16.0 in input control file. **XOFF** Logical scalar. Is .FALSE. if X coordinate within valid plotting region, .TRUE. if outside plotting region. **XSAV** Real scalar. X coordinate of last plot move. Passed through argument list from PNTPLT. XTEMP Real scalar. X coordinate of end point of line segment to be clipped. Υ Real scalar. Y coordinate of point to be plotted. Passed through argument list from subroutine PNTPLT. Real scalar. If Y coordinate of plotting YLIMIT region, this variable contains value of which boundary (top or bottom) it is off. Real scalar. Y coordinate of first point YLSAV in line that was clipped in last call to CLIP. YLTEMP Real scalar. Value of YMIN or YMAX, depending on if first point in line clipped was off top or bottom of plotter. YMAX Real scalar. Constant that represents upper (top) limit of the plotting region. Defined in subroutine PNTPLT. Real scalar. Constant that represents YMIN lower (bottom) limit of the plotting

YOFF
Logical scalar. Is .FALSE. if Y coordinate within valid plotting region, .TRUE. if outside plotting region.

YSAV Real scalar. Represents Y coordinate of previous point plotted. Passed through parameter list from subroutine PNTPLT.

	YTEMP	Real scalar. Value of YMIN or YMAX, depending on if point clipped is off top or bottom of the plotter.
6.5	SUBROUTINE CONVREC .	
	DDD	Real scalar. Intermediate variable used in calculating data for PØ array.
	DX(3)	Real array. Contains results from determinant function DET for solving the three equations CONVREC uses.
	ISG	Integer scalar. Segment number that defines the coordinate system for plotting that particular plane.
	NPPPP	Integer scalar. Number of points in the polygon. Loaded from array NPPP.
	R(3)	Real array. Contains matrix multiple of portions of arrays DVP and P \emptyset .
6.6	SUBROUTINE CROSS	
	A(3)	Real array. Vector in Č=Ř*Ř.
	B(3)	Real array. Vector in Č=Ā*B.
	C(3)	Real array. Result vector in $\vec{C} = \vec{A} * \vec{B}$.
6.7	FUNCTION DET	
	A11	Real scalars. Values Representing 3 \times 3, square array.

Real scalar. Determinant of input array.

A31 A32 A33

DET

6.8 SUBROUTINE DOT and DOTT

	A(L,3)	Real array. Array A in matrix multiply $\underline{C=AB}$.
	B(1,3)	Real array. Array B in matrix multiply $C=AB$.
	C(N,M)	Real array. Output of DOT(T), in array C matrix multiply C=AB.
	L .	Integer scalar. First subscript value for arrays A and B.
	M	Integer scalar. Second subscript value for array C.
	N	Integer scalar. First subscript value for array C.
6.9	SUBROUTINE DRCYPR	
	A(3)	Real array. Contains rotation angles (degrees).
	D(3,3)	Real array. Output of DRCYPR, contains direction cosine matrix.
	I1 .	Integer scalar. Axis of rotation for first angle (X=1, Y=2, Z=3).
	12	Integer scalar. Axis of rotation for second angle $(X=1, Y=2, Z=3)$.
	13	Integer scalar. Axis of rotation for third angle (X=1, Y=2, Z=3).
	M	Integer scalar. Constant of 6, size of \underline{T} array.
	N	Integer scalar. Constant of 3, size of \underline{A} array.
	P	Real scalar. Pitch angle in radians.
	R	Real scalar. Roll angle in radians.
	RADIAN	Real scalar. Constant for degrees to radians conversion.

Real array. Temporary buffer space used T(6,3)for matrix multiple. Υ Real scalar. Yaw angle in radians. 6.10 SUBROUTINE ELIPSN Real scalar. Semiaxes length in X DELTAX direction divided by number of steps. DELTAY Real scalar. Semiaxes length in Y direction divided by number of steps. IN(INDEX) Integer array. Number of points in each contour array. Integer scalar. Number of steps plus INDEX one. Integer scalar. Number of points in this N half contour that is about the X axis. Real scalar. $\frac{1}{2}$ where "a" is the SIMP1 semiaxes length in the X direction. Real scalar. $\frac{1}{L^2}$ where "b" is the SIMP2 semiaxes length in the Y direction. Real scalar. $\frac{1}{2}$ where "c" is the SIMP3 semiaxes length in the Z direction. Real scalar. The value of $1-X^2*SIMP1$. **TEMP** Real scalar. The value of TEMP-Y²*SIMP2. **TEST** Real scalar. Current X coordinate. Χ starts at zero.

Real array. Semiellipsoid contour array.

X1(3, INDEX, INDEX2)

Υ

Real scalar. Current Y coordinate, starts at zero.

Z

Real scalar. Current Z coordinate, starts at length "C."

6.11 SUBROUTINE EXTEND

Ι

Integer scalar. Points to unhidden point location in P array.

IFLAG

Integer scalar. Flag passed back from subroutines HIDE and HYDE telling whether or not the point is hidden.

J

Integer scalar. Points to hidden point

location in P array.

KK

Integer scalar. Overlapping object number that overlaps with present object,

from array IE.

N

Integer scalar. Denotes midpoint coordinates, either I or J, depending on hidden or not.

NUM

Integer scalar. Represents the number of overlapping objects with a particular object.

P(3,2)

Real array. Contains X, Y, and Z coordinates of the end points of the line.

P3(3)

Real array. Temporary buffer containing coordinates of the midpoint of the line.

6.12 SUBROUTINE GENDCM

CAMERA(3)

Real array. Position vector for the viewpoint in the reference sysem of the segment to which the viewpoint is attached.

D(3,3)

Real array. Direction cosine matrix for viewpoint. This direction cosine matrix transforms from the inertial reference frame to the local reference frame.

FOCUS(3)

Real array. Position vector for point which viewpoint Z axis is aimed.

SUM

Real scalar. Running summation of values

in Z array.

XNDRM

Real scalar. Normalization factor.

Z(3)

Real array. Contains differences between matching values in CAMERA and FOCUS

arrays.

6.13 SUBROUTINE HIDE

IFLAG

Integer scalar. Flag passed back to caller indicating hidden (IFLAG=1), or

not hidden (IFLAG=2).

KK

Integer scalar. Polygon number to check

blocking on.

NPRIME(3)

Real array. Contains matrix multiply of

arrays DVP and PPRIME.

P3(3)

Real array. Contains position vector of

point.

P4(3)

Real array. Contains P3 transformed to

viewpoint reference system.

P5(3)

Real array. Contains matrix multiple of

NPRIME and PPRIME arrays.

P6(3)

Real array. Contains matrix multiple of

NPRIME and P4 arrays.

P7(2)

Real array. Contains position vector P4

projected on the projection plane.

PP(3)

Real array. Contains polygon sides P

minus the viewpoint array VP.

6.14 SUBROUTINE HYDE

IFLAG

Integer Scalar. Flag passed back to caller to indicate whether or not the point was hidden. IFLAG=1 means hidden, IFLAG=2, not hidden.

N

Integer scalar. Possible hiding ellipsoid number.

R(3)

Real array. Vector to plotting point in local reference frame of ellipsoid or polygon of which it is a part.

6.15 SUBROUTINE INPUT

BD(24, 40)

Real array. Contains contact ellipsoid parameters for each contact ellipsoid. The rotation of the contact ellipsoid relative to the segment coordinate system is already incorporated in the values of this array. Read from ATB input file.

CTIME

Double precision scalar. Current program time (seconds) calculated in Main program.

DD (3)

Real array. Contains the offset vector (in the inertial coordinate system) of the contact ellipsoid from the segment c.g.

ICODE

Integer scalar. Input flag controlling the generation of the direction cosine matrix. Read from input control file.

ISW1

Integer scalar. Flag controlling whether plots are to be made when the time of the VIEW run is less than the time interval of the simulation data. If this is true, only the available simulation data will be plotted.

NFAST

Integer scalar. Represents number of segments to be removed used in ATB simulation. Read from input control file.

NSIDES

Integer scalar. Number of sides in a polygon. Loaded from NPPP array.

NSP

Integer scalar. Defines number of supplemental planes being input from input control file.

6.16 SUBROUTINE LSEGINT

	IFLAG	Integer scalar. Flag indicating intersection (IFLAG=1), or no intersection (IFLAG=0).
	M(2)	Real array. Contain the slopes of the two lines.
	P(4,2)	Real array. Contains coordinates of lines P1-P2 and R1-R2.
	P1(2)	Real array. Contains X and Y coordinate of one end point of line P1-P2.
	P2(2)	Real array. Contains X and Y coordinate of the other end point of line P1-P2.
	R1(2)	Real array. Contains X and Y coordinate of one end point of line R1-R2.
	R2(2)	Real array. Contains X and Y coordinate of the other end point of line R1-R2.
	T(2)	Real array. Contains T ratio values, where
		$T = \frac{X0 - X1}{X2 - X1}$
6.17	SUBROUTINE MAT	
	A(JA,1)	Real array. Array in matrix multiply $C=AB$.
	B(JB,1)	Real array. Array in matrix multiply $\underline{C=AB}$.
	C(JC,1)	Real array. Array in matrix multiply $\underline{C=AB}$.
	JA	Integer scalar. First subscript value for array A.
	JB	Integer scalar. First subscript value for array B.
	JC	Integer scalar. First subscript value for array C.
	LL	Integer scalar. Size of array A.

MM

Integer scalar. Size of array B.

NN

Integer scalar. Size of array C.

S

Real scalar. Running summation of matrix

multiple.

6.18 SUBROUTINE NFRAME

ENDFRA

Integer scalar. End-of-frame halfword to

Grinnell graphics system.

LU

Integer scalar. Dummy argument for

PLOTS.

М

Interger scalar. Dummy argument for

PLOTS.

MASK

Integer scalar. Halfword mask defining

what corresponding bit in ENDFRA to

change.

N

Integer scalar. Dummy argument for

PLOTS.

STATUS

Integer scalar. Contains return status

of the request.

6.19 SUBROUTINE OVERLAP

Ι

Integer scalar. Denotes object No. 1 to

be tested.

III

Integer scalar. Same as variable I.

K

Integer scalar. Denotes object No. 2 to

be tested.

KKK,

Integer scalar. Same as variable K.

MFLAG

Integer scalar. Indicates overlap or not. MFLAG=O indicates no overlap and

MFLAG=1 indicates overlap.

NPTS1

Integer scalar. Number of sides plus one

for object No. 1.

NPTS2

Integer scalar. Number of sides plus one

for object No. 2.

P1(2) Real array. Contains X and Y coordinates on projection plane of first end point of first line segment. P2(2) Real array. Contains X and Y coordinates on projection plane of second and point of first line segment. R1(2) Real array. Contains X and Y coordinates on projection plane of first end point of second line segment. R2(2)Real array. Contains X and Y coordinates on projection plane of second end point of second line segment. 6.20 SUBROUTINE PLPLN Α Real scalar. The fraction of a contour line that a single step represents. I1 Integer scalar. Starting point number for the current side. 12 Integer scalar. Ending point number for the current side. INDEX2 Integer scalar. Variable telling how large to dimension SEG in subroutine PNTPLT. **IPEN** Integer scalar. Calcomp pen control variable. **NSIDES** Integer scalar. Number of points for present polygon. NUM Integer scalar. Total number of points that make up the contour of a plane. SEG(3,3000) Real array. Array of vectors that make up the sides of a polygon. 6.21 SUBROUTINE PNTPLT Integer scalar. Flag passed back from subroutines HYDE and HIDE telling whether **IFLAG**

or not the line is hidden.

INDEX2 Integer scalar. Input argument telling how large to dimension array SEG. Calculated in Main as: (NSTEPS for that object \times 4) + 1. Integer scalar. Represents the number of INUM objects which overlap with a particular object. **IPEN** Integer scalar. Pen value sent to the Calcomp subroutine PLOT. Either pen up (3) or pen down (2). **IPLOT** Integer scalar. Flag sent to subroutine CLIP to plot only first line segment after clipping determined. KK Integer scalar. Overlapping object number that overlaps with present object, from array IE. LFLAG Integer scalar. Flag set which tells whether or not last point was hidden. LFLAG=1 means point was hidden and LFLAG=2 means not hidden. NEWPEN Integer scalar. Variable contains value of last pen move. The number is positive if the pen move was performed and negative if the pen move was clipped. **NPTS** Integer scalar. Number of points to plot, from subroutines PLPLN and PSE. P(3) Real array. Contains coordinates of end point of line returned by subroutine EXTEND. PP(3,2) Real array. Contains coordinates of end points of line sent to subroutine EXTEND. PPP (3) Real array. Coordinates of point

PPP(3)

Real array. Coordinates of point currently being plotted, converted to viewpoint reference frame.

SEG(3,INDEX2)

Real array. Contains coordinates of points to be plotted, passed through argument list by subroutines PSE and PLPLN.

X Real scalar. Final X coordinate of point to be plotted.

XMAX

Real scalar. Constant that represents the right limit of the plotting region. Defined in data card 16.0 in input control file.

XMIN

Real scalar. Constant that represents the left limit of the plotting region. Defined in data card 16.0 in input control file.

XSAV

Real scalar. Represents X coordinate of previous point plotted.

Υ

Real scalar. Final Y coordinate of point to be plotted.

YMAX

Real scalar. Constant that represents upper (top) limit of the plotting region.

YMIN

Real scalar. Constant that represents lower (bottom) limit of the plotting

region.

YSAV

Real scalar. Represents Y coordinate of

previously plotted point.

6.22 SUBROUTINE POLYD

D1(810)

Real array. Equivalent with array D, contains directional cosine matrices for the polygons.

INDEX(G)

Real array. Contains constants used for transposing data elements in D to get correct direction in matrix D.

J

Integer scalar. Calculated variable that converts a 3-dimensional subscript value to a single dimensional one.

NUM

Integer scalar. Offset used to put data from P array into SEGLP array.

SUMD1

Real scalar. Magnitude squared of the x coordinate axis of the polygon.

SUMD2

Real scalar. Magnitude squared of the y coordinate axis of the polygon.

6.23 SUBROUTINE PREPLT

IPEN	Integer scalar. Variable that denotes Calcomp pen move value from PNTPLT.
NEWPEN	Integer scalar. Saved value of the previous pen (IPEN) move.
X	Real scalar. X coordinate of first end point of line X,Y - XSAV, YSAV.
XLIMIT	Real scalar. If X coordinate outside valid plotting region is equal to boundary value (left or right), pen is off.
XMAX	Real scalar. Constant that represents right limit of valid plotting region. Defined in subroutine PNTPLT.
XMIN	Real scalar. Constant that represents left limit of valid plotting region. Defined in subroutine PNTPLT.
XOFF	Logical scalar. Is .FALSE. if X coordinate in plotting region, .TRUE. if outside.
XSAV	Real scalar. X coordinate of second end point of line X, Y - XSAV, YSAV.
XTEMP	Real scalar. X coordinate of the intercept point at YTEMP between X, Y and XSAV, YSAV.
Υ	Real scalar. Y coordinate of the first end point of line X, Y - XSAV, YSAV.
YLIMIT	Real scalar. If Y coordinate outside valid plotting region, is equal to boundary value (top or bottom) pen is off.
YMAX	Real scalar. Constant that represents upper (top) limit of the plotting region. Defined in subroutine PNTPLT.
YMIN	Real scalar. Constant that represents lower (bottom) limit of the plotting region. Defined in subroutine PNTPLT.
YOFF	Logical scalar. Is .FALSE. if Y coordinate in plotting region, .TRUE. if outside.
`	

YSAV Real scalar. Y coordinate of the second end point of line X, Y, and XSAV, YSAV. YTEMP Real scalar. Y coordinate (either YMIN or YMAX) where pen went out of the plotting region. 6.24 SUBROUTINE PRJELR A11 Real scalar. Represents the α_{11} component of $[\alpha]$. A12 Real scalar. Represents the α_{12} component of $[\alpha]$. A22 Real scalar. Represents the α_{22} component of $[\alpha]$. DD(3,3)Real array. Array containing intermediate values for transposing A array to A'. DDD(3,3)Real array. Contains values of the A' array. LAMDA1 Real scalar. Eigenvalue used to circumscribe ellipse with rectangle. LAMDA2 Real scalar. Eigenvalue used to circumscribe ellipse with rectangle. M1 Real scalar. Value representing major axis vector. Real scalar. Value representing minor M2 axis vector. Real array. Contains X, Y, and ZR(3,3)components of $\vec{r_1}$, $\vec{r_2}$, and $\vec{r_3}$. R2(2,3)Real array. Contains values of r_1 , r_2 , and $\overrightarrow{r_3}$ on the projection plane. Real scalar. r_{x} value for $\overrightarrow{r_{1}}$. RX1

RX2

RY1

RY2

Real scalar. r_{ν} value for $\overrightarrow{r_2}$.

Real scalar. r_y value for $\overrightarrow{r_1}$.

Real scalar. r_y value for $\overrightarrow{r_2}$.

S(3)

Real array. Contains matrix multiple of

DVP and SS.

SS(3)

Real array. Contains position vectors for individual ellipsoid minus inertial reference frame.

6.25 SUBROUTINE PRJPLY

NPTS

Integer scalar. Number of points in the

polygon. Taken from array NPPP.

PP1(3)

Real array. Vector from the viewpoint

origin to the point (vertex) in the

inertial coordinate system.

PP2(3)

Real array. Vector from the viewpoint

origin to the point (vertex) in the

inertial coordinate system.

PPP2(3)

Real array. Vector from the viewpoint

origin to the point (vertex) in the

viewpoint coordinate system.

6.26 SUBROUTINE PSE

IHALF

Integer scalar. Flag that indicates which half of the ellipsoid to plot. IHALF=1, semiellipsoid with X > 0plotted, IHALF=2, semiellipsoid with

X < 0 plotted.

ΤN

Integer scalar. Number of points in each

quarter contour saved in array X1.

INDEX

Integer scalar. Number of steps plus

one.

INDEX2

Integer scalar. Maximum number of points

any complete contour can have.

IPEN

Integer scalar. Calcomp pen control

variable.

KK

Integer scalar. Variable in DO 60 loop

which runs the loop backwards.

LINE

Integer scalar. Varaible in DO 100 loop

which runs the loop backwards.

NPT Integer scalar. Number of points in

semiellipsoid to transfer to array SEG.

NPTS Integer scalar. Number of points in

semiellipsoid.

SEG(3,INDEX2) Real array. Array containing a complete

contour.

X1(3,INDEX,INDEX) Real array. Semiellipsoid contour array.

6.27 SUBROUTINE ROT

A(M,3) Real array. Output of ROT, rotation

matrix to be computed.

C Real scalar. Cosine of angle of

rotation.

L Integer scalar. Variable telling which

axis to rotate about (X=1, Y=2, Z=3).

M Integer scalar. First subscript value

for array A.

S Real scalar. Sine of angle of rotation.

TH Real scalar. Angle of rotation

(radians).

6.28 SUBROUTINES SOLVA, SOLVR

See Appendix B, Discussion of Equations used by PRJELR. The variables correspond to the equations found in this appendix.

6.29 SUBROUTINE TITLE

ID(10,20) Integer array. Contains text for title

frame.

NFRAME Integer scalar. Number of title frames

to plot.

NLINE Integer scalar. Constant that represents number of lines in each title frame. Real scalar. X coordinate of where to SIZE start plotting title frame. X Real scalar. Height of characters in title frame. · Y Real scalar. Y coordinate of where to start plotting title frame. 6.30 SUBROUTINE TPOINT I Integer scalar. Denotes polygon on projection plane. IN Integer scalar. Flag passed back to IN=1 caller, IN=1 means point inside polygon, means outside the polygon. NPTS1 Integer scalar. Number of points for polygon I. Real array. Contains position vector for PP1(3) polygon I. PP2(3) Real array. Point on the projection plane to be tested. R(3) Real array. Contains differences between PP1 and PP2. SIGN2 Real scalar. Test variable created like array SIGN. 6.31 SUBROUTINE TRANS1 DD(3,3)Real array. Contains matrix multiple of DVP and parts of D. Real array. Output of TRANS1, it is P(3) position vector of an ellipsoid transformed to the viewpoint reference frame. R(3) Real array. Input to TRANS1, contains position vector for surface points of an ellipsoid in the segment coordinate

system.

R2(3)

Real array. Contains the position vector of an ellipsoid in the viewpoint coordinate system.

SEGLP2(3)

Real array. Contains the location of the segment c.g. in the viewpoint coordinate system.

6.32 FUNCTION XINTCP

PFACTR

Real scalar. The slope of the line

X, Y - XSAV, YSAV.

Χ

Real scalar. X coordinate of first end

point of line X, Y - XSAV, YSAV.

X1

Real scalar. Difference between X and

XSAV.

XINTCP

Real scalar. X coordinate value of YTEMP

in line X, Y - XSAV, YSAV.

XSAV

Real scalar. X coordinate of second end

point of line X, Y - XSAV, YSAV.

Υ

Real scalar. Y coordinate of first end point of line X, Y - XSAV, YSAV.

Y1

Real scalar. Difference between Y and

YSAV.

Y2

Real scalar. Difference between YTEMP

and YSAV.

YSAV

Real scalar. Y coordinate of second end

point of line X, Y - XSAV, YSAV.

YTEMP

Real scalar. Y coordinate value (between

Y and YSAV) for which the caller wants

the X coordinate.

6.33 SUBROUTINE XYZ

See Appendix B. "Hidden Line Problem Between Two Ellipsoids." Variables in XYZ correspond directly to the equations in this appendix.

6.34 FUNCTION YINTCP

PFACTR	Real scalar. The slope of the line X, Y - XSAV, YSAV.
X	Real scalar. X coordinate of the first end point of the line X, Y - XSAV, YSAV.
Х1 .	Real scalar. Difference between X and $X1$.
X2	Real scalar. Difference between XTEMP and XSAV.
XSAV	Real scalar. X coordinate of second end point of line X, Y - XSAV, YSAV.
XTEMP	Real scalar. X coordinate value (between X and $XSAV$) for which the caller wants the Y coordinate.
Υ	Real scalar. Y coordinate of first end point of line X, Y - XSAV, YSAV.
Y1	Real scalar. Difference between Y and YSAV.
YINTCP	Real scalar. Y coordinate value at XTEMP in line X, Y - XSAV, YSAV.
YSAV	Real scalar. Y coordinate of second end point of line X, Y - XSAV, YSAV.

6.35 SUBROUTINE YZ, Z

See Appendix B, "Hidden Line Problem Between Two Ellipsoids." Variables in YZ and Z correspond directly to the equations in this appendix.

7.0 SUBROUTINE, COMMON BLOCK, AND VARIABLE CROSS-REFERENCE CHARTS

This section contains three cross-reference charts: subprograms called by other subprograms, common blocks used by subprograms, and variables contained within each common block.

7.1 Subprogram Cross-Reference Chart

! CALLING!! ROUTINE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	IIINOTTTCITNDDPETREPTLEJJETLLTOANZN NLPVS TYPEDEEUG ARLPYPEP VVLINT T D RS PSNC TI MLNLDLLL ARENSC C I E RNDM N EAT TRY T1P P
CALLED : ROUTINE FREQ :	E C T P
! !BUILDIE 1 ! !CLIP 3 ! !convrec 1 ! !cross 2 !	1 1 2
!DET 4 ! !DOT 9 ! !DOTT 3 ! !DRCYPR 1 ! !ELIPSN 1 !	1 1 222 1 1 1 1 1 1 1 1
! EXTEND 1 ! !	1 1 1 1 1 1
!INPUT 1 ! !LSEGINT 1 ! !MAT 16 ! !NFRAME 2 !	1 2
!PLPLN 1 !PNTPLT 2 !POLYD 1 !PREPLT 3 !	1 1 1 1
!PRJELR 1 ! !PRJPLY 1 ! !PSE 2 ! !ROT 3 ! !SOLVA 1 !	·
!SOLVR 3 ! !TITLE 1 ! !TPOINT 2 ! !TRANS1 3 !	3 1 1 1 1 2
!XINTCP 3 ! !XYZ 1 ! !YINTCP 3 ! !YZ 1 ! !Z 1 !	2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7.2 Common Block Cross-Reference Chart

! COMMON! ! BLCCK! ! ! ! ! ! CALLING! ! ROUTINE!	9	0 N E C T	0 3 U G	LLIPSE	N T E R S	P L T	10 0 L Y G O N	IR MM O V E	VIEWP
!MAIN	*		*	*	*	*	*		*!
!BUILDIE				*	*		*	*	!
!CLIP									!
!CONVREC!!CROSS!!	*	*	*	Ħ			*		:
!DET !	í I								1
!DOT !	• !								i
!DOTT !									į
!DRCYPR !	!								!
!ELIPSN !	!			*					į
!EXTEND				*	*	*			!
IGENDOM !									!
!HIDE !	! •			*			*		:
INPUT			_	*	_	4		_	:
!LSEGINT	•	*	~	~	•	^	*	~	^ ;
!MAT	į								į
INFRAME !	!								į
!OVERLAP !	!						*		!
!PLPLN !	!		*	*		*	*	*	į
!PNTPLT !				*	*	*			!
!POLYD	!			*			*		!
!PREPLT !									!
PRJELR !				*			*		!
!PSE	i I			^			^		!
!ROT !	!								į
!SOLVA !	!								į
!SCLVR !									!
!TITLE !	!		*						!
!TPOINT !	!						*		!
!TRANS1	!			*					*!
!XINTCP !	[]								!
!XYZ									:
!YINTCP !	; 								:
! Z	• !								!
!	ļ								į
,	-								

COMMON!	T	ONECT	3 U		I N T E R	PLTT	POLYGON	REMOVE	V! I! W! P!
VARIABLE		1		_			11		!
IA !BDRS !CONVEC			*	*			*		:
LDEVFLG ! LDVP ! LDVPO ! LICOLOR			*	*		; *			! ! *!
!IDEBUG !IE !IELP !IFLAG			*	*	*		_		!
IINT IIREMOV IIVP						*	*	*	: ! ! *!
!MPL !NIE !NISG !NP		*	*		*	•			!!!!!!!
INPLANE ! INPPP ! INPREM ! INSEG !				*			*	*	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
INSTEPS !OFLINE !OFSETX !OFSETY			*	*		*			1 1 1
!ONLINE. ! !P !PL	*		*				*		1
! POS ! PO ! RA ! SEGLP	! !			* *			*		!
!SEGLP !SFACTR !SIGN !TERM !TIME			*			*	*		!
!VP ! !VPO ! !VP2 !	!			*		,			*!
!ZTIME !						*	- -		! !

8.0 VIEW PROGRAM SOURCE LISTING

```
PROGRAM VIEW
      COMMON/PLTT/SFACTR/INT/TIME/ICOLOR(91)/OFSETX/OFSETY/ZTIME
      common/inters/ NIE(90), IE(90,90)
      COMMON/ELLIPSE/NSTEPS(90), IELP, A(3,3,30), SEGLP(3,90), VP(3),
     *D(3,3,99),DVP(3,3),RA(3),NSEG
      COMMON/POLYGON/NPLANE/IFLAG/NPPP(93),P3(3,4,63),P(3,4,63),
     *CONVEC(2,4,90),POS(2,90),SIGN(90)
      COMMON/ATB/PL(17,30)
                                                                                     3
      COMMON/VIEWP/VPO(3),DVPO(3,3),IVP,VP2(3)
      COMMON/D&UG/IDEBUG(SO)/NISG/DEVFLG/ONLINE/TERM/BORS/OFLINE
                                                                                    10
      DIMENSION WORK (10000)
                                                                                    11
      DIMENSION ID(13)
                                                                                    12
      INTEGER DEVFLG.ONLINE.TERM.EDRS.OFLINE
                                                                                    13
      DOUBLE PRECISION ZTIME/CTIME/STIME/DTIME/ETIME
                                                                                    14
C
                                                                                    15
C
                              VERSION 1.1
                                                  MARCH 9,1983
                                                                                    15
     WRITTEN BY SRL IN SUPPORT OF THE
                                                                                    17
C
С
     MATHEMATICS AND ANALYSIS BRANCH OF AMRL
                                                                                    18
C
     AT WPAFB.
                                                                                    19
C
                                                                                    20
C
     STORED ON TAPE1 THAT IS DUTPUT FROM THE ATSM VERSION V5D.
                                                                                    21
C
                                                                                    22
     THIS PROGRAM USES CONTOUR LINES TO REPRESENT THE 3-D PROPERTIES OF
                                                                                    23
C
     THE DATA ON TAPE1. THE CONTOUR LINES ARE PLOTTED ON PAPER THAT
C
                                                                                    24
     REPRESENTS THE PROJECTION PLANE. THE POINTS THAT COMPOSE A CONTOUR
                                                                                    25
C
C
     LINE IN 3-SPACE ARE PROJECTED THROUGH A POINT ON TO THE PROJECTION
                                                                                    25
     PLANE.
                                                                                    27
C
                                                                                    28
     CURRENTLY THERE ARE TWO CLASSES OF OBJECTS THAT ARE PLOTTED USING
                                                                                    29
٢
     CONTOUR LINES.
                                                                                    30
       CLASS 1 - ELLIPSOIDS
                                                                                    31
     ELLIPSOIDS ARE USED TO REPRESENT BODY SEGMENTS. THIS PROGRAM ALLOWS
С
                                                                                    32
     ELLIPSOIDS TO BE IMBEDDED IN OTHER ELLIPSOIDS.
С
                                                                                    33
                                                                                    34
C
        CLASS 2 - CONVEX POLYGONS
                                                                                    35
     CONVEX POLYGONS ARE USED TO REPRESENT OBJECTS THAT CAN BE DEFINED
                                                                                    35
£
     BY A SET OF PLANES. ALL POLYGONS DEFINED BY THE INPUT MUST BE
                                                                                    37
C
     CONVEX POLYGONS; CONCAVE POLYGONS CAN BE OBTAINED USING A
                                                                                    33
c
     COMBINATION OF CONVEX POLYGONS.
                                                                                    39
                                                                                    40
C
     THE HIDDEN LINE ROUTINES CHECK FOR POINTS HIDDEN BY
                                                                                    41
     ELLIPSOIDS OR POLYGONS. THESE ROUTINES MUST CHECK FOR ANY POSSIBLE CBJECT THAT MAY BE BLOCKING THE
C
                                                                                    43
C
     CURRENT POINT AS SEEN FROM THE VIEWPOINT.
                                                                                    44
C
     IN ORDER TO ELIMINATE CHECKING ALL OBJECTS FOR
                                                                                    45
     EACH POINT, SUBROUTINES ARE INCLUDED IN THE
                                                                                    46
     VIEW PROGRAM THAT DETECT OBJECT OVERLAP ON THE
                                                                                    47
C
     PROJECTION PLANE. SEFORE THE PLOTTING PHASE OF THE
                                                                                    43
     VIEW PROGRAM, OBJECTS WHICH OVERLAP EACH OTHER ON
                                                                                    49
C
     THE PROJECTION PLANE ARE RECORDED IN THE IE ARRAY.
                                                                                    50
     DURING THE PLOTTING PHASE OF THE VIEW PROGRAM, THE IE ARRAY IS REORDERED TO DECREASE THE SEARCH TIME
                                                                                    51
C
                                                                                    52
     FOR DEJECTS THAT MAY BE BLOCKING THE CURRENT POINT
                                                                                    53
     BEING PLOTTED. THE ASSUMPTION USED HERE IS - IF AN
                                                                                    54
     OBJECT BLOCKED THE PREVIOUS POINT ON A CONTOUR LINE
                                                                                    55
     THEN THAT OBJECT PROBABLY BLOCKS THE NEXT POINT
                                                                                    56
     ON THE CONTOUR LINE.
                                                                                    57
                                                                                    53
                                                                                    59
      LUPLOT=3
      ONLINE=1
                                                                                    63
      TERM=2
                                                                                    51
      NF = G
                                                                                    52
```

```
OFLINE=3
                                                                                  63
      3025=4
                                                                                  64
      READ(5,130) DEVFLG
                                                                                  65
      WRITE(6,130) DEVFLG
                                                                                  66
130
      FORMAT(I1)
                                                                                  67
                                                                                  68
С
      IF (DEVFL3.Eq.1.OR.DEVFLG.Eq.3) CALL PLOTS(0/0/LUPLOT)
                                                                                  69
      IF (DEVFLG.EG.2.OR.DEVFLG.EQ.4) CALL PLOTS(0/0/LUPLOT)
                                                                                  70
c
                                                                                  71
      IFLAG = C
                                                                                  72
      CALL TITLE
                                                                                  73
      READ(5,230) (ID(I),I=1,10)
                                                                                  74
      WRITE(6,200) (ID(I),I=1,10)
                                                                                  75
  200 FORMAT(1044)
                                                                                  75
      READ(5,150) STIME, DTIME, ETIME
                                                                                  77
150
      FORMAT(3D10.0)
                                                                                  78
      CTIME=STINE-DTIME
                                                                                  79
      ITIME=CTIME*1000000.00
                                                                                  80
      Od.OCCCCO1\andrianiti=2Mito
                                                                                  81
      READ(5,125) IDEBUG
                                                                                  82
      WRITE(0,125) IDEBUG
                                                                                  83
 125 FORMAT(SOI1)
                                                                                  34
 100 CONTINUE
                                                                                  85
      IFLAG = IFLAG + 1
                                                                                  86
      CTIME=CTIME+DTIME
                                                                                  27
      ITIME=CTIME*1000000.DO
                                                                                  88
      CTIME=ITIME/1000000.DD
                                                                                  89
      IF(CTIME.GT.ETIME) CALL PLOT(0.,0.,999)
                                                                                  99
      IF (CTIME.GT.ETIME) STOP
                                                                                  91
                                                                                  92
      CALL INPUT(CTIME)
      IF(IFLAG.EQ.10) GO TO 100
                                                                                  93
      IF(DEVFLG.EQ.OFLINE.OR.DEVFLG.EQ.SDRS) CALL NEWPEN(ICOLOR(91))
                                                                                  94
      O.CCOI+3MITX=2MITX
                                                                                  95
      NE=NE+1
                                                                                  96
      PACCECT (4) BILLIAN
                                                                                  97
1000 FORMAT(* MAIN - PROCESSING FRAME #*,14)
                                                                                  98
      CALL PLOT(0.,0.,-3)
                                                                                  99
      CALL SYMBOL(.5,10.0,.335,10,0.,35)
                                                                                100
      CALL SYMPOL(.5,9.0,.335,'TIME(MSEC)',0.,13)
                                                                                101
      CALL NUMBER(3.85,9.0,.335,XTIME,0.,-1)
                                                                                102
      CALL MAT(DVPO,D(1,1,1VP),DVP,3,3,3,3,3,3)
                                                                                103
      CALL DOT(D(1,1,1VP),VPO,VP,3,1,3)
                                                                                104
      DO 10 K=1,3
                                                                                105
   10 VP(K)=VP(K)+SEGLP(K,IVP)
                                                                                 106
      CALL MAT(DVP, VP, VP2, 3, 3, 1, 3, 3, 3)
                                                                                107
      CALL CONVREC
                                                                                108
      CALL PRIPLY
                                                                                109
      CALL PRIELR
                                                                                 110
      CALL POLYD
                                                                                111
      CALL SUILDIE
                                                                                112
      IF(IDEBUG(1).EQ.1) WRITE(6,350) (NIE(I),I=1,90)
                                                                                 113
      IF(IDEBUG(2).Eq.1) WRITE(6,350) ((IE(I,J),I=1,90),J=1,90)
                                                                                114
  350 FORMAT(270(30(1x,12)/))
                                                                                 115
      DO 30 IK=1.NSEG
                                                                                 115
      IF(DEVFLG.EQ.OFLINE.OR.DEVFLG.EQ.EDRS) CALL NEWPEN(ICOLOR(IK))
                                                                                 117
      IELP=IK
                                                                                 118
      INDEX=NSTEPS(IK)+1
                                                                                119
      INDEX2=4*INDEX-3
                                                                                 120
      Y X 1 = 1
                                                                                121
      IIN=3*INDEX*INDEX+IX1
                                                                                122
      ISEG=IIN+INDEX
                                                                                123
      CALL ELIPSN(INDEX,WOPK(IX1),WOPK(IIN))
                                                                                124
      CALL PSE(WORK(IX1), WORK(IIN), WORK(ISEG), INDEX, INDEX2,1)
                                                                                125
```

	CALL PSE(WORK(IX1), WORK(IIN), WORK(ISEG), INDEX, INDEX2, 2)	126
30	CONTINUE	127
	CALL PLPLN(WORK/INDEXZ)	128
	IF(DEVFLG.EQ.BDRS) CALL NFRAME	129
	IF(DEVFLG.EQ.OFLINE.OR.DEVFLG.EQ.ONLINE) CALL PLOT (12.,0.0,-3)	139
	IF(DEVFLG.EQ.TERM) CALL PLOT(0./0./-3)	131
	GO TO 109	132
	5.00	177

```
SUBROUTINE BUILDIE
                                                                                 134
С
                                                                                 135
      ONCE THIS SUBROUTINE IS CALLED ALL OBJECTS ARE REPRESENTED BY
                                                                                 136
      POLYGONS PROJECTED ON THE VIEWPOINT PROJECTION PLANE.
                                                                                 137
      THIS SUBROUTINE WILL BUILD THE IE AND NIE ARRAYS.
                                                                                 138
      NEE(K) REPRESENTS THE NEMBER OF ENTPIES IN THE IE(I/K) ARRAY FOR
C
                                                                                 139
      DEJECT K.
                                                                                 140
      THE IE(I/K) ARRAY CONTAINS DEJECT NUMBERS FOR DEJECTS THAT OVERLAR
                                                                                 141
C
      IN THE PROJECTION PLANE.
                                                                                 142
      FOR EXAMPLE, IE(1,2) MIGHT CONTAIN A 3 WHICH MEANS OBJECT 3 OVERLAPS WITH OBJECT 2.
                                                                                 143
                                                                                 144
      COMMON/POLYGON/NPLANE/IFLAG/NPPP(90)/PO(3/4/60)/P(3/4/60)/
                                                                                 145
     *CONVEC(2,4,90),POS(2,90),SIGN(90)
                                                                                 145
      COMMON/ELLIPSE/NSTEPS(90)/IELP/A(3/3/30)/SEGLP(3/90)/VP(3)/
                                                                                 147
     *D(3,3,90),DVP(3,3),R4(3),NSEG
                                                                                 148
      COMMON/INTERS/ NIE(90)/IE(90,90)
                                                                                 149
      COMMON/REMOVE/NPREM/IREMOV(30)
                                                                                 150
      DO 5 I=1,90
                                                                                 151
      NIE(I) = 0
                                                                                152
      00 5 K=1,90
                                                                                 153
    5 \text{ IE(I,K)} = 0
                                                                                 154
      IF(NSEG .EQ. 0) GO TO 60
                                                                                 155
      00 55 I=1,NSEG
                                                                                 156
      IF(NIE(I) .NE. 0) GO TO 10
                                                                                 157
      NIE(I) = 1
                                                                                 158
      I=(1/I) = I
                                                                                 159
   10 \text{ IOBJ} = I + 1
                                                                                 160
      IF(I.EQ.NSEG) GO TO 31
                                                                                 151
      DO 30 K=108J,NSEG
                                                                                 162
      CALL OVERLAP(I,K,MFLAG)
                                                                                 163
      IF(MFLAS .EQ. 0) GO TO 30
                                                                                 164
С
                                                                                 165
C
      YES, THERE IS OVERLAP BETWEEN I AND K
                                                                                 166
                                                                                 167
      IF(NIE(K) .NE. 0) GO TO 20
                                                                                 168
      NIE(K) = 1
                                                                                 169
      IE(1/K) = K
                                                                                 170
   20 NIE(K) = NIE(K) + 1
                                                                                 171
      NIE(I) = NIE(I) + 1
                                                                                 172
      IE(NIE(I),I) = K
                                                                                 173
      IE(NIE(K),K) = I
                                                                                 174
   30 CONTINUE
                                                                                 175
   31 CONTINUE
                                                                                 176
      IF(NPLANE.EQ.O) 30 TO 55
                                                                                 177
      IOBJ = NPLANE + 30
                                                                                 174
      00 50 K=31,I03J
                                                                                 179
      DO 200 LT=1,NPPEM
                                                                                 180
      IF(K-30.EQ.IREMOV(LT)) 30 TO 50
                                                                                 131
200
      CONTINUE
                                                                                 182
      CALL OVERLAP(I,K,MFLAG)
                                                                                 183
      IF(MFLAS .EQ. 0) GO TO 50
                                                                                 184
C
                                                                                 135
      YES, THERE IS OVERLAP BETWEEN I AND K
С
                                                                                 186
Ċ
                                                                                 137
      NIE(K) = NIE(K) + 1
                                                                                 188
      NIE(I) = NIE(I) + 1
                                                                                 139
      IE(NIE(I),I) = K
                                                                                 190
      IE(NIE(K),K) = I
                                                                                 191
   50 CONTINUE
                                                                                 192
   55 CONTINUE
                                                                                 193
                                                                                 194
      NOW CHECK PLANE AGAINST PLANE
                                                                                 195
```

С		196
50	IF(NPLANE .LE. 1) RETURN	197
	MPLANE=NPLANE+29	193
	KPLANE=NPLANE+30	199
	DO 100 I=31,MPLANE	200
	00 300 LT=1.NPREM	201
	IF(I-29.EQ.IREMOV(LT)) GO TO 100	202
300	CONTINUE	203
	IOSJ = I + 1	204
	DO 400 K=10BJ.KPLANE	205
	CALL OVERLAP(I,K,MFLAG)	236
	IF(MFLAG .EQ. 0) SO TO 400	207
С	/	203
č	YES, THERE IS OVERLAP BETWEEN I AND K	209
č	TEON THERE IS STEREN SETWING I AMS K	210
•	NIE(K) = NIE(K) + 1	211
	NIE(I) = NIE(I) + 1	212
	IE(NIE(I),I) = K	213
	IE(NIE(K),K) = I	214
400	CONTINUE	215
	CONTINUE	216
103	RETURN	217
	FND	218
	FNO	/18

```
SUBROUTINE CLIP(X,Y,XSAV,YSAV,XMIN,XMAX,YMIN,YMAX,IPEN,IPLOT)
                                                                           219
    ****
                                                                            220
                                                                           221
C
   THIS SUBROUTINE CLIPS PLOTTING OFF BOTH ENDS OF THE CALCOMP DRUM
                                                                           222
                                                                            223
C
C
    **********
                                                                            224
                                                                           225
C
     LOGICAL XOFF, YOFF
                                                                            226
     VOLTA LCALL/O/
                                                                            227
                                                                            223
C
  DETERMINE IF X AND/DE Y CLIPPING AND IF OFF TOP/BD/LEFT,
                                                                            229
   OR RIGHT OF PLOTTER
                                                                            230
                                                                            231
     XOFF=_FALSE_
                                                                           232
      YOFF=.FALSE.
                                                                           233
     IF (X.LT.XMIN.OR.X.GT.XMAX) XOFF=.TPUE.
                                                                           234
      IF (Y.LT.YMIN.OR.Y.GT.YMAX) YOFF=.TRUE.
                                                                           235
     IF (X.LT.XMIN) XLIMIT=XMIN
                                                                           235
     IF (X.GT.XMAX) XLIMIT=XMAX
                                                                            237
      IF (Y.LT.YMIN) YLIMIT=YMIN
                                                                            233
     IF (Y.GT.YMAX) YLIMIT=YMAX
                                                                            239
                                                                            240
  IF PREVIOUS CALL TO CLIP WAS A PEN UP TO 1ST POINT IN SEGMENT,
                                                                           241
  INTERPOLATE USING NEW AND SAVED COORD. S. MOVE PEN, RESET SAVE
                                                                            242
   VALUES FOR X+Y POINTS, AND CONTINUE
                                                                           243
r
                                                                            244
      IF (LCALL.EQ.0) GO TO 10
                                                                            245
          IF (XOFF) YLTEMP=YINTCP(X,Y,XSAV,YSAV,XLIMIT)
                                                                           246
          IF (.NOT.XOFF) YLTEMP=YLIMIT
                                                                            247
          IF (YOFF) XLTEMP=XINTCP(X,Y,XSAV,YSAV,YLIMIT)
                                                                           243
          IF (.NOT.YOFF) XLTEMP=XLIMIT
                                                                           249
          IF (ALTEMP.LT.XMIN) XLTEMP=XMIN
                                                                           250
          IF (XLTEMP.GT.XMAX) XLTEMP=XMAX
                                                                           251
          IF (YLTEMP.LT.YMIN) YLTEMP=YMIN
                                                                            252
          IF (YLTEMP.GT.YMAX) YLTEMP=YMAX
                                                                            253
          CALL PLOT(XLTEMP, YLTEMP, 3)
                                                                            254
          XSAV=XLTEMP
                                                                            255
          YSAV=YLTEMP
                                                                            255
          LCALL=0
                                                                            257
                                                                            258
  IF 1ST POINT OF SEGMENT AND PEN UP, SAVE THESE COORD.'S, SET
                                                                            257
C
  FLAG, AND EXIT
                                                                           260
C
                                                                            251
10
      CONTINUE
                                                                            262
      IF (IPLOT.NE.1.OR.IPEN.NE.3) GO TO 20
                                                                            263
           XLSAV=X
                                                                            264
           YLSAV=Y
                                                                            265
           LCALL=1
                                                                            266
           IPLOT=0
                                                                            267
           RETURN
                                                                            268
                                                                            269
  DO WE WANT TO PLOT?
ε
                                                                            270
                                                                            271
C
20
      CONTINUE
                                                                            272
      IF (IPLOT.NE.1) GO TO 30
                                                                            273
                                                                            274
C
   DETERMINE X AND Y COORDINATES TO PLOT TO
                                                                            275
C
C
                                                                            276
      IF (XOFF) YTEMP=YINTCP(X,Y,XSAV,YSAV,XLIMIT)
                                                                            277
      IF ( NOT . XOFF) YTEMP=YLIMIT
                                                                            273
      IF (YOFF) XTEMP=XINTCP(X,Y,XSAV,YSAV,YLIMIT)
                                                                            279
      IF (LNOTLYOFF) XTEMP=XLIMIT
                                                                            230
```

С		231
C	PLOT ONLY THE FIRST SEGMENT AFTER CLIPPING DETERMINED, IGNORING	232
C	ALL SEGMENTS AFTER UNLESS PEN TO BE LIFTED.	283
C		254
	CALL PLOT(XTEMP/YTEMP/IPEN)	235
30	CONTINUE	286
	IPL0T=0	287
	RETURN	285
	E N D	289

```
SUBROUTINE CONVREC
                                                                                                                                                                      297
С
                                                                                                                                                                      291
              THIS SUBROUTINE CONVERTS RECTANGLES IN THE ATB
                                                                                                                                                                      292
C
             SIMULATION FORMAT TO POLYGONS IN THE VIEW PLOTTING FORMAT.
                                                                                                                                                                      293
С
                                                                                                                                                                      294
c
            COMMON/ATB/PL(17/30)
                                                                                                                                                                      295
            DIMENSION R(3)
                                                                                                                                                                      295
            DIMENSION DX(3)
                                                                                                                                                                      297
            COMMON/POLYGON/NPLANE/IFLAS/NPPP(90)/PO(3/4/60)/P(3/4/60)/
                                                                                                                                                                     293
          *CONVEC(2,4,90),POS(2,90),SIGN(90)
                                                                                                                                                                      233
            COMMON/CONECT/ NP/MPL(3,5,60)
                                                                                                                                                                      300
             COMMON/DBUG/IDEBUG(80)/NISG/DEVFLG/ONLINE/TERM/BDRS/OFLINE
                                                                                                                                                                      301
            COMMON/ELLIPSE/NSTEPS(90), IELP, 4(3,3,30), SEGLP(3,90), VP(3),
                                                                                                                                                                      3û2
          *0(3,3,90), DVP(3,3), RA(3), NSEC
                                                                                                                                                                      303
             INTEGER DEVFLG, ONLINE, TERM, BDPS, OFLINE
                                                                                                                                                                      304
             IF(NPLANE.EQ.O) RETURN
                                                                                                                                                                      305
             IF(IDEBUG(4).NE.O) WRITE(6,50)
                                                                                                                                                                      325
      50 FORMAT(1H1, PLANE INFORMATION 1/14 /17(1H*))
                                                                                                                                                                      307
            DO 100 J=1,NPLANE
                                                                                                                                                                      303
             IF(J.GT.NP) GO TO 15
                                                                                                                                                                      309
             IF(IFLAG.NE.1) GJ TO 15
                                                                                                                                                                     310
            DDD=DET(PL(1/J)/PL(2/J)/PL(3/J)/PL(8/J)/PL(9/J)/PL(10/J)/
                                                                                                                                                                      311
                           PL(13,J),PL(14,J),PL(15,J))
                                                                                                                                                                     312
            DX(1) = DET(PL(4,J),PL(2,J),PL(3,J),PL(11,J),PL(9,J),PL(10,J),
                                                                                                                                                                      313
                                      PL(15/J)/PL(14/J)/PL(15/J))
                                                                                                                                                                     314
            DX(2) = DET(PL(1,J),PL(4,J),PL(3,J),PL(3,J),PL(11,J),PL(10,J),
                                                                                                                                                                      315
                                      PL(13,J),PL(16,J),PL(15,J))
                                                                                                                                                                      31 ó
            DX(3) = DET(PL(1/J)/PL(2/J)/PL(4/J)/PL(8/J)/PL(9/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(11/J)/PL(
                                                                                                                                                                      317
                                      PL(13,J),PL(14,J),PL(16,J))
                                                                                                                                                                      318
            DO 10 I=1.3
                                                                                                                                                                      319
            TEMP=DX(I)/DDD
                                                                                                                                                                      320
            PG(I,1,J)=TEMP
                                                                                                                                                                      321
            PO(I,2,J)=PL(I+7,J)*PL(12,J)+TEMP
                                                                                                                                                                      322
            PO(I,3,J)=PL(I+12,J)*PL(17,J)+PO(I,2,J)
                                                                                                                                                                      323
      10 P3(1,4,3)=PL(1+12,3)*PL(17,3)+TEMP
                                                                                                                                                                     324
      15 CONTINUE
                                                                                                                                                                      325
             ISG=MPL(1,1,J)
                                                                                                                                                                      326
             IF(ISG.EQ.)) ISG=NISG
                                                                                                                                                                      327
    IF(IDERUG(4).NE.D) ARITE(6,200) ISS
200 FORMAT(1X,'ISS=',12)
                                                                                                                                                                     323
                                                                                                                                                                      329
             DO 20 L=1,4
                                                                                                                                                                      330
             CALL DOT(D(1,1,1SG),PO(1,L,J),P,3,1,3)
                                                                                                                                                                      331
             00 20 I=1.3
                                                                                                                                                                      332
             P(I/L/J)=R(I)+3EGLP(I/ISG)
                                                                                                                                                                      333
      20 CONTINUE
                                                                                                                                                                      334
             IF(J_*LE_*NP) NPPP(J+30)=4
                                                                                                                                                                      335
             IF(IDEBUG(4).NE.O) WRITE(5,3000)
                                                                                                                                                                      336
  3000 FORMAT(1X,30(1H*))
                                                                                                                                                                      337
             IF(IDEBUG(4).NE.O) WRITE(6,2000) J
                                                                                                                                                                      333
  2030 FORMAT(3X, PLANE NUMBER = 1,13)
                                                                                                                                                                      339
             I_{i} = I_{i}I_{i}
                                                                                                                                                                      340
             NPPPP=NPPP(J+30)
                                                                                                                                                                      341
             IF(IDEBUG(4).NE.O) WRITE(6,1000)((P(I,K,JJ),I=1,3),K=1,NPPPP)
                                                                                                                                                                      342
  1000 FORMAT(3x, F7.2, 3x, F7.2, 3x, F7.2)
                                                                                                                                                                      343
    100 CONTINUE
                                                                                                                                                                      344
             RETURN
                                                                                                                                                                      345
             END
                                                                                                                                                                      346
```

	SUBROUTINE CROSS(A/B/C)		347
C	COMPUTES VECTOR CROSS PRODUCT C=AX3		345
	DIMENSION A(3)/8(3)/C(3)		349
	c(1)=A(2)+B(3)-A(3)+B(2)		350
	C(2)=A(3)*∂(1)−A(1)*∂(3)	•	351
	c(3)=A(1)+B(2)-A(2)+B(1)		352
	RETURN		353
	END		357

FUNCTION DET(A1.1/A1.2/A1.3/A2.1/A2.2/A2.3/A3.1/A3.2/A3.3)	355
DET=A11*(A22*A33-A23*A32)-A12*(A21*A33-A23*A31)	356
1+A13*(A21*A32-A22*A31)	357
PETURN	353
END	359

```
SUBROUTINE DCT(A,B,C,N,M,L)
                                                                                              360
C
                                                                     REV 03 05/31/73
                                                                                              351
C
       PERFORMS MATRIX MULTIPLICATION C = A*3.
                                                                                              362
       IF A AND 2 ARE VECTORS, C IS THE DOT PRODUCT ALB
ε
                                                                                              363
C
                                                                                              364
         APGUMENTS:
                                                                                              365
366
C
Ĉ
           A: MATRIX OF SIZE (L/N).
            B: MATRIX OF SIZE (L/M).
C: PRODUCT MATRIX OF SIZE (N/M).
C
                                                                                              367
C
                                                                                              363
Ĉ
            NAMALE SIZES OF MATRICES AVE.C.
                                                                                              369
C
                                                                                              370
         (NOTE: SUBROUTINE ASSUMES. THAT THE FIRST DIMENSION OF APB AND C IN THE CALLING PROGRAM IS LAL AND N.)
C
                                                                                              371
C
                                                                                              372
                                                                                              373
       DIMENSION A(L,1),8(L,1),C(N,1)
                                                                                              374
       00 10 I=1/N
                                                                                              375
       DO 10 J=1.4
                                                                                              376
       C(I_{r}J) = 0.0
                                                                                              377
   00 10 K=1,L
10 C(I,J) = C(I,J) + A(K,I)*3(K,J)
                                                                                              373
                                                                                              379
       RETURN
                                                                                              330
       END
                                                                                              381
```

	SUBROUTINE DOTT (A/2/C/N/M/L)	332
C	REV 01 11/20/72	393
С	PERFORMS MATRIX MULTIPLICATION C = A8*	384
C	WHERE DIMENSIONS ARE A(N/L) / B(M/L) AND C(N/M).	325
C		335
	DIMENSION A(N,1),3(M,1),c(N,1)	337
	00 10 I=1.N	388
	00 10 J=1,M	385
	C(I,J)=2.	390
	00 5 K=1.L	391
5	$C(I_{J}) = A(I_{J}K) *= (J_{J}K) + C(I_{J})$	392
10	CONTINUE	393
	RETURN	394
	END	395

```
396
      SUBROUTINE DRCYPR (D.A.11,12,13)
C
                                                              REV 03 07/08/74
                                                                                      397
      SETS UP 3X3 DIRECTION COSINE MATRIX FOR GIVEN YAW, PITCH AND ROLL.
                                                                                      398
C
c
                                                                                      400
C
        ARGUMENTS:
          D: BX3 DIRECTION COSINE MATRIX TO BE COMPUTED.
                                                                                      431
           A: ARRAY OF LENCTH 3 CONTAINING POTATATION ANGLES (DEGREES).
                                                                                      432
          i1: AXIS OF ROTATION FOR 1ST ANGLE (1,2,3 = X,Y,Z)
                                                                                      403
         I2: AXIS OF ROTATION FOR 2ND ANGLE (1,2,3 = X,Y,Z)
I3: AXIS OF ROTATION FOR 3RD ANGLE (1,2,3 = X,Y,Z)
                                                                                      404
                                                                                      405
                                                                                      406
      DIMENSION D(3/3)/A(3)/T(6/3)
                                                                                      407
      RADIAN=.0174532925199433
                                                                                      433
      Y = A(1) * RADIAN
                                                                                      409
      P = A(2) *RADIAN
                                                                                      410
      R = A(3) * RADIAN
                                                                                      411
      M = 6
                                                                                      412
      N = 3
                                                                                      413
      00 10 I=1.3
                                                                                      414
      00 5 J=1.3
                                                                                      415
      0(1,1)=0.
                                                                                      415
    5 T(I,J)=C.
                                                                                      417
      T(I/I)=1.
                                                                                      418
   10 D(I,I)=1.
                                                                                      419
      IF(Y.EQ.D.)30 TO 20
                                                                                      420
      CALL ROT(T/I1/Y/M)
                                                                                      421
      DC 15 I=1,3
DO 15 J=1,3
                                                                                      422
                                                                                      423
   15 D(I,J)=T(I,J)
                                                                                      424
   20 IF(P.EQ.0.0)G0 TO 30
                                                                                      425
      CALL ROT(T(4,1),12,P,M)
                                                                                      426
      CALL MAT (T (4,1),T(1,1),D(1,1),3,3,3,M,M,N)
                                                                                      427
      00 25 I=1.3
                                                                                      428
      00 25 J=1.3
                                                                                      429
   25 T(I,J)=D(I,J)
                                                                                      430
   30 IF(R.EQ.C.O) GO TO 40
                                                                                      431
      CALL ROTCT(4/1)/I3/R/M)
                                                                                      432
      CALL MAT(T(4,1),T(1,1),D(1,1),3,3,3,M,M,N)
                                                                                      433
   40 CONTINUE
                                                                                      434
      RETURN
                                                                                      435
      END
                                                                                      436
```

	รบ	3 %	ט ט	ΤI	NΕ		ΞL	ΙP	3!	(C	I N	DE	ΕX	, X	1,	Ιħ	1)																	
*	* * *	* *	* *	* *	**	* 1	* *	* *	* 1	**	* *	**	* * 1	**	* *	* 1	***	*	* *	* *	* *	r f çi	* *	**	*			٠.					•	
	_	_						_						_									_ :						_					
	THI	5	รบ	5 8	วบ	IT.	N	Ē	3	N	ER	Α7	E:	5	1/	4	J F		TH	Ē	CC	N.	ΤO	IJ P	,. L	IN	ES	FO	R	AN	εL	LI.	950)ID
																									_									
*	זכ			* *	* *	. 1		~ ~ 7	7.	•	 			~ ~	# # U \$					~ ~			# K	* *	×									
	50																								à.	۰,	-	001		~ .	• •			
	:: }::																	, A	()	, 3	. / 3	٠.	,,	5 E	υL	Ρ() /	40)	, V	۲(,	,,,			
	PDE					-											-			. -														
	DΞ											1:	: i_ i	~,) /	NS) 5	٠,	S	ΙŁ	L	,												
	SI						-		_	-	-																							
	SI		-				_				•																							
	3 I						_			٠,٠	,																							
	0.0			_	_	-			X																									
	χ=		- 1	<i>)</i> *	υΞ	_ :	A	Х														•							•					
	N=	_			_	٠.																												
	00																																	
	Y =					_		-																										
	TE						•			•																								
	TΞ			T	ΞM	Р	-	Y	*)	*	5 I		2																					
	N =		•			_						_																						
	ΙF	-										_	1 (30																				
	Z :						ST.	<i>l</i> s	I	12.	3)																							
	X 1			_	-																													
	X 1			_	-	-																												
	X 1			_	_	Z																												
50	CO:																																	
	GO		-		-																													
00	Υ:						12	/s	I'	P	2)																							
	X 1			_	-	-																												
	Х1			_	-	-																												
	Х1) =	ე.	. 0																											
101				V																														
	R E	T U	R.N																															
	₽ NI	`																																

```
SUBROUTINE EXTEND(P/I/J)
                                                                             473
     COMMON/INTERS/ NIE(95)/IE(90,90)
                                                                             474
     COMMON/ELLIPSE/NSTEPS(93)/IELP/A(3/3/30)/SEGLP(3/93)/VP(3)/
                                                                             475
     *D(3,3,93),DVP(3,3),RA(3),NSEG
                                                                             476
     DIMENSION P(3/2)/P3(3)
                                                                             477
      COMMON/PLTT/SFACTR, INT, TIME, ICOLOR (91), OFSETX, OFSETY, ZTIME
                                                                             473
         ********
C
                                                                             479
Ç
                                                                            480
        THIS SUBROUTINE FINDS A MIDPOINT FOR A LINE THAT
C
                                                                            481
       BEGINS ON P(1) AND ENDS ON P(2).
С
                                                                            432
        THIS NEW POINT IS CHECKED BY SUBROUTINE HYDE. IF IT IS HIDDEN THEN P(I)=P3
                                                                            483
¢
                                                                            434
        IF IT IS NOT HIDDEN THEN P(J)=P3
                                                                             435
        THIS ALGORITHM IS ITERATED INT TIMES.
C
                                                                            436
        UPON LEAVING EXTEND- P(I) WILL CONTAIN THE RESULT.
                                                                            487
                                                                             488
        NOTE: P ARRAY IS CHANGED BY THIS SUBROUTINE.
                                                                            489
C
                                                                             490
                                                                             491
ε
         ***********
     DO 3 IN=1.INT
                                                                             492
     DC 1 L=1,3
                                                                             493
   1 P3(L)=(P(L,2)+P(L,1))/2.0
                                                                            494
     NUM=NIE(IELP)
                                                                             495
     DG 2 IM=1.NUM
                                                                             496
     KK=IE(IM,IELP)
                                                                             497
     IF(KK.LE.30) CALL HYDE(KK,P3,IFLAG)
                                                                             498
     IF(KK.GT.30) CALL HIDE(KK.P3,IFLAG)
                                                                             499
     IF(IFLAG.EQ.1) GO TO 10
                                                                            500
   2 CONTINUE
                                                                             501
 10 N=I
                                                                            502
     IF(IFLAG.EQ.1) N=J
                                                                            503
     00 3 L=1/3
                                                                            504
    3 P(L/N)=P3(L)
                                                                            505
     RETURN
                                                                            506
     END
                                                                            507
```

```
SUPROUTINE GENDOM(CAMERA, FOCUS, D)
                                                                                 503
    ***********
                                                                                 509
C
     THIS SUBPOUTINE SENERATES A DIRECTION COSINE MATRIX.
C
                                                                                 510
                                                                                 511
С
      DIMENSION CAMERA(3), FOCUS(3), Z(3), D(3,3)
                                                                                 512
      sum = 0.0
                                                                                 513
     IF (FOCUS(1).NELO.O.OR.FOCUS(2).NELG.O.OP.
                                                                                 514
          CAMERA(1).NE.0.0.OR.CAMERA(2).NE.0.0) GC TO 50
                                                                                 515
      DO 40 I=1.3
                                                                                 516
      00 40 J=1,3
                                                                                 517
      D(I,J)=0.0
                                                                                 513
40
      CONTINUE
                                                                                 519
      0(1/2)=1.
                                                                                 523
      D(2/1)=1.
                                                                                 521
      D(3/3)=-1.
                                                                                 522
      GC TO 999
                                                                                 523
50
      CONTINUE
                                                                                 524
                                                                                 525
C
      DO 100 I=1.3
                                                                                 526
      Z(I) = FOCUS(I) - CAMERA(I)
                                                                                 527
  100 SUM = SUM + Z(I)*Z(I)
                                                                                 523
      SUM = SGRT(SUM)
                                                                                 529
      DO 200 I=1.3
                                                                                 530
  200 z(I) = z(I)/sum
                                                                                 531
С
                                                                                 532
      XNORM = SGRT(Z(1)*Z(1) + Z(2)*Z(2))
                                                                                 533
                                                                                 534
C
C FILL IN FIRST ROW OF D
                                                                                 535
C
                                                                                 536
       D(1/1) = I(2)/XNORM
                                                                                 537
      D(1,2) = -Z(1)/XNORM
                                                                                 538
      0(1/3) = 0.0
                                                                                 539
                                                                                 540
                                                                                 541
C FILL IN SECOND ROW OF D
                                                                                 542
      D(2/1) = Z(1)*Z(3)/XNORM

D(2/2) = Z(2)*Z(3)/XNORM
                                                                                 543
                                                                                 544
                                                                                 545
      D(2/3) = -XNORM
                                                                                 546
C
 FILL IN THIRD ROW OF D
                                                                                 547
                                                                                 548
  00 300 I=1.3
300 D(J/I) = Z(I)
                                                                                 549
                                                                                 550
999
                                                                                 551
     CONTINUE
      RETURN
                                                                                 552
                                                                                 553
      END
```

```
SUBROUTINE HIDE(KK,P3,IFLAG)
                                                                               554
      CJMMON/POLYGON/NPLANE/KFLAG/NPPP(90)/P0(3,4,60)/P(3,4,60)/
                                                                               555
     *CONVEC(2,4,95),POS(2,96),SIGN(90)
                                                                               556
      COMMON/ELLIPSE/NSTEPS(90), IELP, A(3,3,30), SEGLP(3,90), VP(3),
                                                                               557
     *D(3,3,9D),DVP(3,3),RA(3),NSEG
                                                                               558
      DIMENSION P7(2) ,PP(3)
                                                                               559
      DIMENSION P3(3),P4(3)
                                                                               56C
      REAL PPRIME(3)/NPRIME(3)
                                                                               561
      CALL TRANS1(P3,P4)
                                                                               562
      P?(1)=P4(1)/P4(3)
                                                                               563
      27(2)=P4(2)/P4(3)
                                                                               564
      CALL TPOINT(P7,KK,IFLAG)
                                                                               565
      IF(IFLAG.EQ.2) RETURN
                                                                               566
                                                                               557
C
        POINT IS INSIDE POLYGON CHECK TO SEE
                                                                               568
C
        IF POLYGON OR POINT IS CLOSER TO VIEWPOINT.
                                                                               569
c
c
                CALCULATE TAU.
                                                                               570
                                                                               571
    · 00 5 I=1,3
                                                                               572
      PPRIME(I)=D(1,I,KK)
                                                                               573
      IF (PPRIME(I).EQ.O.O) PPRIME(I)=.000001
                                                                               574
5
      CONTINUE
                                                                               575
      CALL MAT(DVP/PPRIME/NPRIME/3/3/1/3/3/3)
                                                                               576
      DG 10 J=1.3
                                                                               577
   10 PP(J)=P(J,1,KK-30)-VP(J)
                                                                               573
      CALL MAT(DVP,PP,PPRIME,3,3,1,3,3,3)
                                                                               579
      CALL DOT(NPRIME, PPRIME, P5,1,1,3)
                                                                               580
      CALL DOT(NPRIME, P4, P6, 1, 1, 3)
                                                                               581
                                                                               532
      IFLAG=2
      IF(P5/P6.GE..99999999) RETURN
                                                                               583
      IFLAG=1
                                                                               584
      RETURN
                                                                               535
      END
                                                                               536
```

```
SUBPOUTINE HYDE(N/R/IFLAG)
                                                                587
c
                                                                533
C
       ********
                                                                589
                                                                590
C
      SUBROUTINE HYDE DETERMINES IF A POINT IS HIDDEN BY
C
                                                                591
       ANOTHER ELLIPSOID.
                                                                592
C
                                                                593
       *********
                                                                594
       **********
                                                                595
C
      N= POSSIBLE HIDING ELLIPSOID NUMBER.
                                                                596
       R= VECTOR TO PLOTTING POINT.
C
                                                                597
       IFLAG= FLAG THAT INDICATES HIDDEN LINE OR NOT.
C
                                                                593
          IFLAG = 2 = NOT HIDDEN
                                                                599
           IFLAG = 1 = 4IDDEN
C
                                                                600
       *********
С
                                                                601
    COMMON/ELLIPSE/NSTEPS(90), IELP, AA(3,3,30), SEGLP(3,90), VP(3),
                                                                602
    *D(3,3,90),DVP(3,3),RA(3),NSEG
                                                                603
    *D(3,3,70),0VP(3,3),RA(3),NSEG
DIMENSION P1(3),P2(3),R2(3),S(3),V(3)
                                                                604
    DIMENSION MU(3),M(3,2),P(3)
                                                                505
     DIMENSION DD (3,3), VP1(3)
                                                                606
    DIMENSION R(3)
                                                                607
     REAL M / MU / MAG
                                                                608
      ASSUME NOT HIDDEN.
C
                                                                603
    IFLAG=2
                                                                610
C
                                                                611
   *****************
C
                                                                512
C
                                                                613
       PUT SEGLP(N) IN N'S FRAME.
PUT SEGLP(M) IN N'S FRAME.
C
                                                                614
С
                                                                615
       PUT R2 IN N'S FRAME.
C
                                                                615
       PUT VIEW POINT IN N°S FRAME.
                                                                617
C
                                                                618
С
   ****************
                                                                619
    CALL MAT(D(1,1,N),SEGLP(1,N),P1,3,3,1,3,3,3)
                                                                620
    CALL MAT(0(1,1,N),SEGLP(1,IELP),P2,3,3,1,3,3)
                                                                621
     IF(IELP .LE. 30) GO TO 55
                                                                622
    00 56 I=1,3
00 56 J=1,3
                                                                623
                                                                624
  56 DO(I_rJ) = O(I_rJ_rN)
                                                                625
    GO TO 57
                                                                626
  55 CONTINUE
                                                                627
    CALL DOTT(D(1,1,N),D(1,1,IELP),DD,3,3,3)
                                                                628
  57 CONTINUE
                                                                529
    CALL MAT(DD/R/R2/3/3/1/3/3/3)
                                                                630
     CALL MAT(D(1,1,N), VP, VP1,3,3,1,3,3,3)
                                                                631
                                                                632
C
                                                                533
   *********
                                                                634
C
C
                                                                635
       FIND VECTORS S.V.AND MU.
                                                                636
       MU WILL BECOME A UNIT VECTOR IN VECTOR M'S DIRECTION
                                                                637
         OR IN M'S OPPOSITE DIRECTION.
                                                                633
C
                                                                639
٤
   **********
                                                                640
                                                                641
     00 1 I=1,3
                                                                642
     S(I) = P2(I) + R2(I) - P1(I)
                                                                643
     V(I) = VP1(I) - P1(I)
                                                                644
     MU(I) = S(I) - V(I)
                                                                645
   1 MAG = MAG + MU(I)**2
                                                                646
     MAG = SGRT (MAG)
                                                                647
r
                                                                548
```

C	* :	************	649
C			650
C		MAKE MU A UNIT VECTOR.	651
C			652
C	**	*************	653
C			654
		DO 2 I=1,3	655
	2	MU(I) = MU(I) / MAG	556
		A = AA(1,1/N)	657
		3 = A(2,2,N)	658
		C = AA(3/3/N)	659
		I=(ABS(MU(1)).GT000000001) G0 T0 10	650
		IF(A3S(MJ(2)).GT000000001) GO TO 20	661
		CALL Z(MU/A/E/C/S/M/JFLAG)	662
	30	IF(JFLAG.EQ.1) RETURN	663
C			664
C	*1	***********	665
C			665
C		FIND P AND COMPARE M TO P TO DETERMINE WHAT POINT	667
C		IS CLOSER TO THE VIEW POINT.	668
C			669
С	*1	****	670
C			671
		DO 3 I=1.3	672
	3	P(I) = S(I) - V(I) - M(I,1)	673
		CALL DOT(P/M(1/1)/RESLT1/1/1/3)	674
		CALL DOT(P/M(1/2)/RESLT2/1/1/3)	675
		IF(N.EQ.IELP) GO TO 400	676
		IF(RESLT1.GT.0.303009001) IFLAG=1	677
	41	IF(RESLT2.3T.0.000000001) IFLAG=1	678
		RETURN	679
	10	CALL XYZ(MU/A/B/C/S/M/JFLAG)	630
		GD TO 30	631
	20	CALL YZ(MU/A/B/C/S/M/JFLAG)	682
		GO TO 30	683
	400	IF(ABS(RESLT2).GT.ABS(RESLT1)) GO TO 41	634
		RESLT2=RESLT1	635
		GC TO 41	636
		RETURN	687
		END	683

```
SUBROUTINE INPUT(CTIME)
                                                                                 639
      COMMON/PLTT/SFACTR/INT/TIME/ICQLOR(91)/OFSETX/OFSETY/ZTIME
                                                                                 699
      COMMON/INTERS/ NIE(90)/IE(90/90)
                                                                                 691
      COMMON/ELLIPSE/NSTEPS(90), IELP, 4(3,3,30), SEGLP(3,90), VP(3),
                                                                                 692
     *D(3,3,90),DVP(3,3),R4(3),NSEG
                                                                                 693
      COMMON/POLYGON/NPLANE, IFLAG, NPPP (90), PO(3,4,60), P(3,4,60),
                                                                                 594
     *CONVEC(2,4,90),POS(2,90),SIGN(90)
                                                                                 595
      COMMON/ATE/PL(17,39)
                                                                                 695
      DIMENSION BD(24,40)
                                                                                 697
      (E) CG NCIRNATIC
                                                                                 523
      COMMON/DBUG/IDEBUG(80).NISG.DEVFLG.ONLINE.TERM.BORS.OFLINE
                                                                                 699
      COMMON/VIEWP/VPJ(3), DVPJ(3,3), IVP, VPZ(3)
                                                                                 700
      COMMON/CONECT/ NP/MPL(3,5,60)
                                                                                 701
      COMMON /REMOVE/NPREM/IREMOV(30)
                                                                                 702
      DOUBLE PRECISION CTIME, ZTIME
                                                                                 7.33
      INTEGER DEVFLG
                                                                                 704
      IF(IFLAG.NE.1) GO TO 600
                                                                                 705
      READ(5,70) NFAST, NPREM, NISG
                                                                                 706
      WRITE(6,70) NEAST, NPPEM, NISG
                                                                                 707
      READ(5,72)(IREMOV(I),I=1,NPREM)
                                                                                 738
      WRITE(6,72)(IREMOV(I),I=1,NPREM)
                                                                                 739
72
      FORMAT(3(4012/))
                                                                                 710
      READ(1/END=300) NSEG/NP/PL/BD/ (((MPL(I/J/K)/I=1/3)/ J=1/5)/K
                                                                                 711
     *=1,30)
                                                                                 712
C
                                                                                 713
   39 READ(1, END=700) TIME, ((SEGLP(I,J), I=1,3), J=1,30),
                                                                                 714
              (((D(I,J,K), I=1,3), J=1,3), K=1,30)
                                                                                 715
      ITIME=TIME * 1000000.+.5
                                                                                 716
      2TIME=ITIME/1000000.00
                                                                                 717
                                                                                 718
70
      FORMAT(312)
                                                                                 719
      IF(ZTIME.LT.CTIME) GO TO 39
                                                                                 720
      READ(5,40) NSP
                                                                                 ?21
   40 FORMAT(I2)
                                                                                 722
      IF(NSP.EQ.3) 30 TO 46
                                                                                 723
      00 45 L=1, NSP
                                                                                 724
      K=NP+L
                                                                                 725
      II=30+NP+L
                                                                                 725
      READ(5,41) NPPP(II), MPL(1,1,K)
                                                                                 727
   41 FORMAT(I1/I2)
                                                                                 728
      NSIDES=NPPP(II)
                                                                                 729
      DO 45 J=1/N3IDES
READ(5,42) (PO(I,J,K),I=1,3)
                                                                                 730
                                                                                 731
   42 FORMAT(3F10.0)
                                                                                 732
   45 CONTINUE
                                                                                 733
   46 NPLANE=NP+NSP
                                                                                 734
      DO 100 J=1,NSEG
                                                                                 735
      00 100 I=1.3
                                                                                 736
  100 A(I,I,J)=1.0/80(I,J)**2
                                                                                 737
      00 200 J=1, NSEG
                                                                                 733
      CALL DOT(D(1,1,1),8D(4,1),DD,3,1,3)
                                                                                 739
      00 200 I=1.3
                                                                                 740
  200 SEGLP(I,J)=SEGLP(I,J)+D0(I)
                                                                                 741
      IF(IDEBUG(3).EQ.1) WRITE(6/6) NSEG/NPLANE
                                                                                 742
    6 FORMAT(1H1/'NUMBER OF SEGMENTS = '/I2/'/ NUMBER OF PLANES = '/I2)
                                                                                 743
      NSEG = NSEG-NEAST
                                                                                 744
      READ(5,301) (ICOLOR(I),I=1,30)
                                                                                 745
  301 FORMAT(8(5X,15))
                                                                                 746
      II=NPLANE+30
                                                                                 747
      READ(5,201) (ICOLOR(I),I=31,90)
                                                                                 743
      READ(5,301) ICOLOR(91)
                                                                                 749
      IF(IDEBUG(3).EQ.1) WRITE(6,71) NSEG
                                                                                 750
```

```
71 FORMAT(1x, THE NUMBER OF SEGMENTS TO BE PLOTTED = 1,12)
                                                                                751
      READ(5,1) (NSTEPS(IPP), IPP=1, NSEG)
                                                                                752
      READ(5,1) (NSTEPS(IPP+30), IPP=1, NPLANE)
                                                                                753
    1 FORMAT(3012)
                                                                                754
      IF(IDEBUG(3).EQ.1) WRITE(6/2) (NSTEPS(IPP)/IPP=1/NSEG)
                                                                                755
    2 FORMAT(10x, NUMBER OF DIVISIONS ALONG A RADIUS*,/2x,3013)
                                                                                756
      IF(IDEBUG(3).EQ.1) WRITE(6,55) (NSTEPS(IPP+3C),IPP=1,NPLANE)
                                                                                757
   55 FORMAT(10X, NUMBER OF DIVISIONS ALONG A SIDE 1,/2X,3913)
                                                                                753
      READ(5,11) INT/SFACTR
                                                                                759
   11 FORMAT(13,7X,F10.2)
                                                                                760
      WRITE(6,11) INT/SFACTR
                                                                                761
      READ(5,901) OFSETX,OFSETY
                                                                                762
      WRITE(5/901) OFSETX/CESETY
                                                                                763
      FORMAT (2F10.0)
                                                                                764
      IF(IDEBUG(3).EQ.1) WRITE(6,902) OFSETX,OFSETY
                                                                                765
      FORMAT(1X, 'OFSETX= ',F10.3,4X, 'OFSETY= ',F10.3)
902
                                                                                766
      IF(IDEBUG(3).EQ.1) WRITE(6,12) SFACTR, INT
                                                                                767
   12 FORMAT(1x, SCALE FACTOR = ',F10.2,2x,' ITERATION NUMBER = ',I3)
                                                                                768
      READ(5,13) VP,RA,IVP,ICODE
                                                                                769
   13 FORMAT(6F10.0/2110)
                                                                                770
                                                                                771
٢
   ICODE = 0 : ROLL, PITCH, AND YAW ANGLES ARE SUPPLIED IN RA ARRAY.
                                                                                772
C
                                                                                773
   ICODE = 1 : DIRECTION COSINE MATRIX SUPPLIED AS INPUT.RA ARRAY IS 1ST
                                                                                774
С
               ROW OF MATRIX. THE NEXT CARD CONTAINS THE 2ND AND 3RD ROWS
                                                                                775
                                                                                776
   ICODE = 2 : POINT AT WHICH VIEWPOINT Z-AXIS IS TO AIM IS SUPPLIED
                                                                                777
                                                                                778
C
                IN RA ARRAY.
                                                                                779
      IF(ICODE .NE. 0) GO TO 500
                                                                                780
      IF(IDEBUG(3).EQ.1) WRITE(6,4) VP,RA
                                                                                781
    4 FORMAT(1x, VIEWPOINT VECTOR (',F10.1,',',F10.1,',',F10.1,')'/1x
                                                                                782
     1 ROTATION OF VIEWPOINT RELATIVE TO SEGMENT COORDINATE SYSTEM 1/1X
                                                                                723
     2"THESE ROTATIONS MUST BE DETERMINED BY PERFORMING ROLL MOTION FIRS
                                                                                784
     3T'/1X'THEN A PITCH MOTION AND THEN THE YAW MCTION'/10X
                                                                                785
     4'ROLL = ',F13.1,1x,'DEG.',5x,'PITCH = ',F10.1,1x,'DEG.',
                                                                                785
     55X/'YAW = '/F10.1/1X/'DEG.'
                                                                                787
      CALL DRCYPR(DVP,RA,1,2,3)
                                                                                783
      GO TO 550
                                                                                789
  500 IF(ICODE .EQ. 2) CALL GENDCM(VP,RA,DVP)
IF(ICODE .EQ. 2) GO TO 550
                                                                                790
                                                                                791
      DO 501 JJJ=1,3
                                                                                792
  501 \text{ DVP}(1,JJJ) = RA(JJJ)
                                                                                793
      READ(5,13) ((DVP(I_1J_1),J=1_13),I=2_13)
                                                                                794
      WRITE(6,14)((DVP(I,J),J=1,3),I=1,3)
                                                                                795
      FORMAT(3(/' ',3(1x,F10.0)))
                                                                                796
   IF(IDEBUG(3).EQ.1) WRITE(0/15) (VP(I)/I=1/3)
15 FORMAT(' VIEW POINT VECTOR ('/F10.1/'//F10.1/'/F10.1/'//
                                                                                797
                                                                                798
        * VIEW POINT ORIENTATION DEFINED IN DIRECTION COSINE MATRIX FORM
                                                                                799
     --')
                                                                                ccs
  550 CONTINUE
                                                                                 801
      00 80 J=1,3
                                                                                 302
      V=0(1)=VP(1)
                                                                                 803
      DO 30 I=1.3
                                                                                 304
   80 DVPO(J,I)=DVP(J,I)
                                                                                 205
      IF(IFLAG .NE. 1) RETURN
                                                                                 305
      IF(IDEBUG(3).EQ.1) WRITE(6,60)
                                                                                 807
   SOS
     1 VIEWPOINT DIRECTION COSINE MATRIX!)
                                                                                 200
      IF(IDE5UG(3).EQ.1) WRITE(6,53)((DVP(I,J),J=1,3),I=1,3)
                                                                                810
      IF(IDEBUG(3).EQ.1) WRITE(6,54)
                                                                                811
      DO ZO IKE=1.NSEG
                                                                                512
      IF(IDEBUG(3).EQ.1) WRITE(6,50) IKE, (SEGLP(I, IKE), I=1,3)
                                                                                813
```

```
-F10.3,2(','F10.3),','//,1x,'A MATRIX',T50,'DIRECTION COSINE MATRIX
                                                                      815
    - 1/)
                                                                      816
                                                                      817
     DO 400 III=1.3
     IF(IDEBUG(3).EQ.1) WRITE(6/51) (A(III/J/IKE)/J=1/3)/(D(III/J/IKE)/
                                                                      813
                                                                      519
    +J=1/3
                                                                      820
 400 CONTINUE
  51 FORMAT(3(2X,F3.5),T50,3(2X,F9.6))
                                                                      821
  53 FOF (AT (3(2X, F9.6))
                                                                      822
     If(IDEBUG(3).64.1) WPITE(6,54)
                                                                      823
  824
                                                                      825
  20 CONTINUE
     RETURN
                                                                      326
600
     SUNTINUE
                                                                      827
     IF(ZTIME.LT.CTIME) GO TO 675
                                                                      328
     IF(ISW1.EQ.D) GD TO 630
                                                                      329
     00 650 J=1.NSEG
                                                                      830
     CALL DOT(D(1,1,J),BD(4,J),DD,3,1,3)
                                                                      831
     DD 650 I=1.3
                                                                      332
 650 SEGLP(I,J)=SEGLP(I,J)+DD(I)
                                                                      833
     ISW1=0
                                                                      834
     IFLAG=5
                                                                      835
     RETURN
                                                                      836
 675 READ(1,END=700) TIME,((SEGLP(I,J),I=1,3),J=1,30),
                                                                      837
        (((0(I,J,K), I=1,3), J=1,3), K=1,30)
                                                                      833
     ITIME=TIME*1000000.+.5
                                                                      839
     COCCCCCTME/1000000.DO
                                                                      840
                                                                      841
С
     ISW1=1
                                                                      842
     GO TO 600
                                                                      843
                                                                      344
 700 WRITE(6,720)
 720 FORMAT(1X, 'END OF DATA REACHED.')
                                                                      845
                                                                      846
     ISW1=1
     STOP
                                                                      847
                                                                      343
 300 WRITE(6,820)
 520 FORMAT(1X, NO DATA ON TAPE. 1)
                                                                      949
     STOP
                                                                      850
 630 IFLAG=10
                                                                      851
     RETURN
                                                                      852
                                                                      853
     END
```

```
SUBROUTINE LSEGINT(P1,P2,R1,R2,IFLAG)
C
                                                                                855
C THIS SUPROUTINE DETERMINES IF TWO LINE SEGMENTS, P1P2 AND R1R2,
                                                                                356
  INTERSECT.
C
                                                                                857
C ALL PARALLEL LINE SEGMENTS, WHETHER COINCIDENT OR NOT, ARE
                                                                                353
  CONSIDERED TO BE NON-INTERSECTING.
C
                                                                                859
C CASE 1 IS CONSIDERED TO BE THE REGULAR CONFIGURATION.
                                                                                860
C THE SPECIAL CASES ARE AS FOLLOWS:
                                                                                861
  2) ONE LINE IS VERTICAL
C
                                                                                862
      BOTH LINES ARE VERTICAL BOTH LINES ARE HORIZONTAL
C
  3)
                                                                                363
  4)
                                                                                364
  5)
      BOTH LINES HAVE THE SAME NON-ZERO SLOPE
                                                                                365
r
  6) ONE LINE IS VERTICAL, THE OTHER IS HORIZONTAL
                                                                                866
C
                                                                                367
C
                                                                                868
C IFLAG = 1 INDICATES INTERSECTION; IFLAG = 3 INDICATES NO INTERSECTION.
                                                                                869
                                                                                270
      DIMENSION P1(2), P2(2), R1(2), R2(2), P(4,2), T(2)
                                                                                871
      REAL M(2)
                                                                                372
      IFLAG=0
                                                                                373
C
                                                                                374
  SET UP ARRAYS
                                                                                875
      DO 1 I=1.2
                                                                                876
      P(1,I) = P1(I)
                                                                                877
     P(2/I) = 22(I)
                                                                                278
     P(3,I) = R1(I)
                                                                                379
   1 P(4/I) = R2(I)
                                                                                880
ε
                                                                                831
  DETERMINE IF CASE 3
                                                                                882
     IF(ABS(P(1,1)-P(2,1)).LT.1.E-11.AND.ABS(P(3,1)-P(4,1)).LT.
                                                                                583
     +1.E-11) RETURN
                                                                                834
C
                                                                                885
C
  DETERMINE IF CASE 4
                                                                                386
     IF(A3S(P(1/2)-P(2/2)).LT.1.E-11.AND.A3S(P(3/2)-P(4/2)).LT.
                                                                                887
     +1.E-11) RETURN
                                                                                888
C
                                                                                839
C
  DETERMINE IF CASE 6
                                                                                890
     DO 2 I=1,2
                                                                                891
      J = 3 - I
                                                                                892
      IF(ABS(P(1,I)-P(2,I)).LT.1.E-11.AND.ABS(P(3,J)-P(4,J)).LT.
                                                                                893
     +1.5-11) GO TO 10
                                                                                394
    2 CONTINUE
                                                                                895
                                                                                596
  DETERMINE IF CASE 2
                                                                                897
      IF(ABS(P(1,1)-P(2,1)).LT.1.E-11.OR.ABS(P(3,1)-P(4,1)).LT.
                                                                                998
     +1.E-11) GO TO 6
                                                                                899
      GO TO 5
                                                                                900
    6 00 3 I=1.4
                                                                                901
      TEMP = P(I,1)
                                                                                902
      P(I,1) = P(I,2)
                                                                                903
    3 P(I/2) = TEMP
                                                                                904
                                                                                905
  REGULAR PROCEDURE
                                                                                906
    5 DO 4 I=1.2
                                                                                907
      I1 = 2 * I
                                                                                938
      I2 = 2*I - 1
                                                                                909
    4 M(I) = (P(I1,2) - P(I2,2))/(P(I1,1) - P(I2,1))
                                                                                910
C
                                                                                911
   CHECK FOR CASE 5
                                                                                912
      IF(ABS(M(1)-M(2)).LT.1.E-11) RETURN
                                                                                913
      X = (P(3/2) - P(1/2) + M(1)*P(1/1) - M(2)*P(3/1))/(M(1) - M(2))
                                                                                914
      DC 7 I=1,2
                                                                                915
```

```
7 T(I) = (X - P(2*I-1,1))/(P(2*I,1) - P(2*I-1,1))
20 IF(T(1).GT.O .AND. T(2).GT.O .AND. T(1).LT.1 .AND. T(2).LT.1)
                                                                                                                 916
                                                                                                                 917
     - IFLAG=1
                                                                                                                 918
       RETURN
                                                                                                                 919
C
                                                                                                                 920
                                                                                                                921
   CASE 6 PROCEDURE
                                                                                                                922
    1G IF(ABS(P(1,1)-P(2,1)).LT.1.E-11) GG TG 11
        J=1
                                                                                                                 923
        I = 2
                                                                                                                924
       GO TO 12
                                                                                                                925
    11 I=1
                                                                                                                925 .
        J=2
                                                                                                                927
    \begin{array}{lll} 12 & T(1) & = & (P(3,J) - P(1,J))/(P(2,J) - P(1,J)) \\ T(2) & = & (P(1,I) - P(3,I))/(P(4,I) - P(3,I)) \end{array}
                                                                                                                923
                                                                                                                929
        60 TO 20
                                                                                                                930
        END
                                                                                                                931
```

```
SUBROUTINE MAT(A/B/C/LL/MM/NN/JA/JB/JC)
                                                                                932
                                                           REV 03 05/31/73
                                                                                933
00000
                                                                                934
      PERFORMS MATRIX MULTIPLICATION C = AB.
                                                                                935
        ARGUMENTS:
                                                                                935
937
          A: MATRIX OF SIZE (L.M).
c
          S: MATRIX OF SIZE (M.N).
                                                                                933
          C: PRODUCT MATRIX OF SIZE (L/N).
                                                                                937
C
          LAMAN: SIZES OF MATRICES AVBAC.
                                                                                940
¢
          LAZLEZLO: 1ST DIMENSION OF AZZZO IN CALLING PROGRAM.
                                                                                941
                                                                                942
C
      DIMENSION A(JA/1)/B(JB/1)/C(JC/1)
                                                                                943
      00 20 L=1/LL
                                                                                944
      00 10 N=1/NN
                                                                                945
                                                                                946
      s = 0.0
      00 5 M=1.MM
                                                                                947
    5 S=S+A(L,M) *3(M,N)
                                                                                948
                                                                                949
      C(L/N)=S
   16 CONTINUE
                                                                                950
                                                                                951
   20 CONTINUE
      RETURN
                                                                                952
      END
                                                                                953
```

	SUBROUTINE NFRAME	954
C		955
τ	THIS ROUTINE PERFORMS THE END OF FPAME HANDLING FOR THE BDRS	956
С		957
	INTEGER*Z ENDFRA, MASK, STATUS	958
	DATA ENDFRA/MASK/ZFFFF/ZFFFF/	959
	CALL DOLWH (8/1/ENDFRA/MASK/STATUS)	960
	CALL PLOTS(M.N.LU)	761
	RETURN	962
	END	963

```
SUBPOUTINE OVERLAP(III, KKK, MFLAG)
                                                                                  964
      DIMENSION P1(2), P2(2), R1(2), R2(2)
                                                                                  965
      DIMENSION PP2(2)
                                                                                  966
      COMMON/POLYGON/NPLANE/IFLAG/NPPP(90)/PO(3,4,60)/P(3,4,60)/
                                                                                  967
     *CONVEC(2,4,90),POS(2,90),SIGN(90)
                                                                                  968
                                                                                  959
C
      OVERLAP TAKES OBJECTS I AND K AND TESTS FOR ANY OVERLAP ON THE
                                                                                  970
C
С
      PROJECTION PLANE.
                                                                                  971
      MFLAG WILL BE RETURNED TO INDICATE IF OVERLAP OR NOT.
                                                                                  972
С
           MFLAG=O MEANS NO OVERLAP
C
                                                                                  973
τ
           MFLAG=1 MEANS OVERLAP
                                                                                  974
C
                                                                                  975
      I = III
                                                                                  976
      K = KKK
                                                                                  977
    5 CONTINUE
                                                                                  978
   DJ 10 J=1,2
10 PP2(J) = POS(J,K)
                                                                                  979
                                                                                  980
Ç
                                                                                  931
C
      GO AROUND THE RINGS
                                                                                  982
C
                                                                                  983
      NPTS1 = NPPP(I)
                                                                                  984
      NPTS2 = NPPP(K)
                                                                                  985
      DO 200 J=1.NPTS2
                                                                                  936
      CALL TPCINT(PP2,I,MFLAG)
                                                                                  987
      IF(MFLAG.EQ.1) RETURN
                                                                                  998
      DO 200 N=1,2
                                                                                  989
  200 PP2(N) = PP2(N) + CONVEC(N,J,K)
                                                                                  990
С
                                                                                  991
C
         CHECKED ALL POINTS AND FOUND THEY WERE ALL OUTSIDE.
                                                                                  992
C
                                                                                  993
ε
   NEXT, CHECK FOR INTERSECTING LINE SEGMENTS.
                                                                                  994
C
                                                                                  995
      00 60 II=1,2
                                                                                  996
      P1(II) = POS(II,I)
                                                                                  997
   60 R1(II) = POS(II/K)
                                                                                  998
      DG 61 L=1,NPTS1
                                                                                  999
   DC 62 II=1/2
62 P2(II) = P1(II) + CONVEC(II/L/I)
                                                                                 1000
                                                                                 1001
      DO 63 J=1,NPTS2
                                                                                 1002
      DO 64 II=1/2
                                                                                 1003
   64 R2(II) = R1(II) + CONVEC(II,J,K)
                                                                                 1004
      CALL LSEGINT(P1/P2/R1/R2/MFLAG)
                                                                                 1005
      IF(MFLAG .EQ. 1) RETURN
                                                                                 1006
      R1(1) = R2(1)
                                                                                 1007
   63 R1(2) = R2(2)
                                                                                 1003
      P1(1) = P2(1)
                                                                                 1009
   61 P1(2) = P2(2)
                                                                                 1010
      IF(I .NE. III) RETURN
                                                                                 1011
      I = KKK
                                                                                 1012
      K = III
                                                                                 1013
      30 TO 5
                                                                                 1014
      END
                                                                                 1015
```

```
SUBROUTINE PLPLN(SEG, INDEX2)
                                                                        1016
C
   ******
                                                                        1317
Ç
                                                                        1018
C
    THIS SUBROUTINE PLOTS THE PLANES.
                                                                        1019
                                                                        1020
   ***********
                                                                        1021
    COMMON/ELLIPSE/NSTEPS(90)/IELP/AA(3,3,30)/SEGLP(3,90)/VP(3)/
                                                                        1022
    *0(3,3,90),0VP(3,3),R4(3),NSEG
                                                                        1023
     COMMON/POLYGON/NPLANE/IFLAG/NPPP(90),P0(3,4,60),P(3,4,60),
                                                                        1024
    *CONVEC(2,4,90),POS(2,90),SIGN(90)
                                                                        1025
     COMMON/DBUG/IDEBUG(80).NISG.DEVFLG.ONLINE.TERM.EDRS.OFLINE
                                                                        1026
     DIMENSION SEG(3,3333)
                                                                        1027
     INTEGER DEVFLG/ONLINE/TERM/BDRS/OFLINE
                                                                        1028
     COMMON/PLTT/SFACTR/INT/TIME/ICOLOR(91)/OFSETX/OFSETY/ZTIME
                                                                        1029
     COMMON /REMOVE/NPREM/IREMOV(30)
                                                                        1030
     IF(NPLANE .eq. 0) RETURN
SEG(1.1) = 0.0
                                                                        1031
                                                                        1032
     SEG(2,1) = 0.0
                                                                        1033
     SEG(3/1) = 0.0
                                                                        1034
     DO 500 LL=1.NPLANE
                                                                        1035
     DO 100 1=1.NPREM
                                                                        1036
     IF (LL.EQ.IREMOV(I)) GO TO 500
                                                                        1037
100
     CONTINUE
                                                                        1033
     L = LL + 30
                                                                        1039
     IF(DEVFLG.EQ.OFLINE.OR.DEVFLG.EQ.BDRS) CALL NEWPEN(ICOLOR(L))
                                                                        1040
     NUM = NPPP(L)*NSTEPS(L) + 1
                                                                        1041
     A = 1./NSTEPS(L)
                                                                        1042
     NSIDES = NPPP(L)
                                                                        1043
     DO 400 K=1,NSIDES
KK = K + 1
                                                                        1044
                                                                        1045
     IF(K .EQ. NSIDES) KK=1
                                                                        1046
     I1 = (K-1)*NSTEPS(L) + 2
                                                                        1047
     1048
                                                                        1049
                                                                        1050
 400 SES(J,I) = SEG(J,I-1) + A*(P(J,KK,LL)-P(J,K,LL))
                                                                        1051
     IPEN = 3
                                                                        1052
     IELP = L
                                                                        1053
     CALL PHTPLT(SEG(1,1), IPEN, INDEX2, NUM)
                                                                        1054
 500 CONTINUE
                                                                        1055
     RETURN
                                                                        1056
     END
                                                                        1057
```

```
SUBROUTINE PHTPLT(SEG, IPEN, INDEX2, NPTS)
                                                                            1058
2
    **********
                                                                            1059
C
                                                                            1060
С
     POINT PLOT SUBROUTINE.
                                                                            1051
                                                                            1062
C
    *********
                                                                            1053
     COMMON/PLTT/SFACTR/INT/TIME/ICOLOR(91)/OFSETX/OFSETY/ZTIME
                                                                            1064
      COMMON/ELLIPSE/NSTEPS(90), IELP, A(3,3,30), SEGLP(3,90), VP(3),
                                                                            1065
     *D(3,3,93),DVP(3,3),RA(3),NSEG
                                                                            1066
      COMMON/INTERS/ NIE(90), IE(90,90)
                                                                            1367
      DIMENSION P(3), PP(3,2), PPP(3)
                                                                            1053
      DIMENSION SEG(3,3333)
                                                                            1069
      DATA YMIN/O.O/,YMAX/11.O/,IPLOT/1/
                                                                            1073
      DATA IFIRST/O/
                                                                            1071
      DATA ITWO/2/, ITHREE/3/
                                                                            1072
      IF (IFIRST-EQ.O) READ(5,1000)XMIN,XMAX
                                                                            1073
1000 FORMAT(2F10.2)
                                                                            1074
      IF (IFIRST.EQ.O) WRITE(6,1001)XMIN,XMAX
                                                                            1075
1001 FORMAT(' XMIN/XMAX='/2(1X/F10.3))
                                                                            1076
      IFIRST=1
                                                                            1077
      LFLAG=2
                                                                            1073
      IFLAG=2
                                                                            1079
      NEWPEN=0
                                                                            1050
      DO 100 IPNT=1,NPTS
                                                                            1031
      INUM=NIE(IELP)
                                                                            1032
      IF(INUM.EQ.O) GC TO 61
                                                                            1093
      DO 60 K=1/INUM
                                                                            1034
      KK=IE(K, IELP)
                                                                            1085
      IF(KK.LE.30) CALL HYDE(KK,SEG(1/IPNT),IFLAG)
                                                                            1036
      IF(KK.GT.30) CALL HIDE(KK/SEG(1/IPNT)/IFLAG)
                                                                            1087
      IF(IFLAG.EQ.1) GO TO 61
                                                                            1333
   60 CONTINUE
                                                                            1039
   61 IF(K.GT.INUM .OR. K.EQ.1) GO TO 62
                                                                            1090
      ITEMP = IE(1/IELP)
                                                                            1091
      IE(1,IELP) = IE(K,IELP)
                                                                            1092
      IE(K, IELP) = ITEMP
                                                                            1093
   62 IF(IFLAG .NE. LFLAG) 50 TO 200
                                                                            1094
   70 IF(IFLAG.EQ.1) GO TO 400
                                                                            1095
                                                                            1096
      LFLAG=2
      CALL TRANS1(SEG(1/IPNT)/PPP)
                                                                            1097
      X=-PPP(1) *SFACTR/PPP(3) +OFSETX
                                                                            1098
      Y=PPP(2) *SFACTR/PPP(3) +OFSETY
                                                                            1099
      IF (X.GE.XMIN.AND.X.LE.XMAX.AND.
                                                                            1100
          Y.GE.YMIN.AND.Y.LE.YMAX) GO TO 71
                                                                            1101
           CALL CLIP(X,Y,XSAV,YSAV,XMIN,XMAX,YMIN,YMAX,IPEN,IPLOT)
                                                                            1102
           NEWPEN=-2
                                                                            1103
           IPEN=3
                                                                            1104
           60 TO 75
                                                                            1105
71
      CONTINUE
                                                                            1106
           IF (IPNT.NE.1)
                                                                            1197
           CALL PREPLT(X,Y,XSAV,YSAV,XMIN,XMAX,YMIN,YMAX,IPEN,NEWPEN)
                                                                            1103
           CALL PLOT(X,Y,IPEN)
                                                                            1109
           IPLOT=1
                                                                            1110
           NEWPEN=2
                                                                            1111
           IPEN=2
                                                                            1112
75
      CONTINUE
                                                                            1113
           XSAV=X
                                                                            1114
           YSAV=Y
                                                                            1115
  3UNITHOS COL
                                                                            1116
      RETURN
                                                                            1117
  200 IF(IPNT.E9.1) GO TO 70
                                                                            1118
      00 250 IJ=1,3
                                                                            1119
```

	PP(IJ,1)=SEG(IJ,IPNT-1)	1120
250	PP(IJ,2)=SEG(IJ,IPNT)	1121
	CALL EXTEND(PP, IFLAG, LFLAG)	1122
	DO 260 IJ=1.3	1123
260	P(IJ)=PP(IJ,IFLAG)	1124
	CALL TRANS1(P,PPP)	1125
	X=-PPP(1)*SFACTR/PPP(3)+OFSETX	1126
	Y=PPP(2)+SFACTR/PPP(3)+OFSETY	1127
	IF(LFLAG.EQ.1) GO TO 350	1123
	IF (X.GE.XMIN.AND.X.LE.XMAX.AND.	1129
	1 Y.GE.YMIN.AND.Y.LE.YMAX). SO TO 261	1130
	CALL CLIP(X,Y,XSAV,YSAV,XMIN,XMAX,YMIN,YMAX,ITWO,IPLOT)	1131
	NEWPEN==3	1132
	GO TO 265	1133
261	CONTINUE	1134
201	IF (IPNT.NE.1)	1135
	1 CALL PREPLT(X,Y,XSAV,YSAV,XMIN,XMAX,YMIN,YMAX,IPEN,NEWPEN)	1136
	CALL PLOT(X,Y,Z)	1137
	IPLOT=1	1137
	NEWPEN=3	1130
265	CONTINUE	1140
237	IPEN=3	1143
	XSAV=X	
	X	1142 1143
	LFLAG=1	1143
	GO TO 109	
350		1145
330	CONTINUE IF (X.GE.XMIN.AND.X.LE.XMAX.AND.	1146 1147
	1 Y.GE.YMIN.AND.Y.LE.YMAX) GO TO 351	1143
	CALL CLIP(X,Y,XSAV,YSAV,XMIN,XMAX,YMIN,YMAX,ITHREE,IPLOT)	1143
	NEWPEN=-2	1150
	IPEN=3	1150
	GO TO 355	1152
351	CONTINUE	1153
371	IF (IPNT.NE.1)	1154
4	1 CALL PREPLT(X,Y,XSAV,YSAV,XMIN,XMAX,YMIN,YMAX,IPEN,NEWPEN)	1155
	CALL PLOT(X,Y,3)	1156
	IPLOT=1	1157
	NEWPEN=2	1158
	IPEN=Z	1159
355	CONTINUE	1160
3))	XSAV=X	1161
	YSAV=Y	1162
	GC TO 70	1163
400	12EN=3	1164
400	LFLAG=1	1165
	CO TO 100	1166
	END	1157
		, , , , ,

```
SUBROUTINE POLYD
                                                                                1158
                                                                                1169
C
      POLYD GENERATES DIRECTION COSINE MATRICIES FOR THE POLYGONS.
                                                                                1170
τ
        THE X AXIS OF THE POLYGON COORDINATE SYSTEM IS THE
                                                                                1171
C
         NORMAL VECTOR TO THE POLYGON SUPFACE.
ε
                                                                                1172
       Y VECTOR IS ALIGNED WITH ONE OF THE POLYGON SIDES.
                                                                                1173
                                                                               1174
r
      COMMON/ELLIPSE/NSTEPS(90)/IELP/A(3/3/30)/SEGLP(3/90)/VP(3)/
                                                                               1175
     *0(3,3,90),0VP(3,3),RA(3),NSEG
                                                                                1176
      COMMON/POLYGON/NPLANE/IFLAG/NPPP(90)/PO(3,4,60)/P(3,4,60)/
                                                                                1177
     *CONVEC(2,4,90),POS(2,90),SIGN(90)
                                                                                1178
      DIMENSION INDEX(6), D1(310)
                                                                                1179
      EQUIVALENCE (D.D1)
                                                                                1133
      DATA INDEX/3,6,7,1,2,5/
                                                                                1131
      DO 100 L=1.NPLANE
                                                                                1182
      J=9*L+262
                                                                                1133
      DO 20 I=1.3
                                                                                1184
      D1(J+I+2)=P(I_2,L)-P(I_1,L)
                                                                                1185
   20 D1(J+I+5)=P(I,3,L)-P(I,1,L)
                                                                                1186
      CALL CROSS(D1(J+3),D1(J+6),D1(J))
                                                                                1187
      SUMD1=0.0
                                                                                1122
      SUMD2=0.0
                                                                                1189
      00 30 I=1.3
                                                                                1190
      SUMD1=SUMD1+D1(J+I-1)**2
                                                                                1191
   30 SUMD2=SUMD2+D1(J+I+2)**2
                                                                                1192
      SUMD1 = SQRT (SUMD1)
                                                                                1193
      SUMDZ=SQRT(SUMDZ)
                                                                                1194
      DO 40 I=1.3
                                                                                1195
      D1(J+I-1)=D1(J+I-1)/SUMD1
                                                                                1196
   40 D1(J+I+2)=D1(J+I+2)/SUND2
                                                                                1197
      CALL CROSS(D1(J),D1(J+3),D1(J+6))
                                                                                1193
      DO 50 I=1.3
                                                                                1199
      (L+(I)X3CNI)1d=qK3T
                                                                                1200
      D1(INDEX(I)+J)=D1(INDEX(I+3)+J)
                                                                                1201
   50 D1(INDEX(I+3)+J)=TEMP
                                                                                1202
  100 CONTINUE
                                                                                1203
      DO 600 J=1/NPLANE
NUM = J + 30
                                                                                1204
                                                                                1205
      DO 500 K=1.3
                                                                                1206
  600 \text{ SEGLP}(K/NUM) = P(K/1/J)
                                                                                1207
      RETURN
                                                                                1203
      END
                                                                                1209
```

```
SUBROUTINE PREPLT(X,Y,XSAV,YSAV,XMIN,XMAX,YMIN,YMAX,IPEN,NEWPEN)
                                                                       1210
******************
                                                                       1211
            en jaron daring en andere en
C
                                                                       1212
  THIS SUBROUTINE PERFORMS NECESSARY PEN MOVES FOR 1ST PLOT
                                                                       1213
  AFTER CLIPPING
                                                                       1214
                                                                       1215
*****************
   LOGICAL XOFF, YOFF
IF (NEWPEN. NE. -2) RETURN
                                                                       1216
                                                                       1217
                                                                       1213
                                                                      1219
  OUTSIDE X AND/OR Y BOUNDARIES???
C
                                                                       1220
¢
                                                                       1221
     XOFF=.FALSE.
                                                                       1222
     YOFF=.FALSE.
                                                                       1223
     IF (X.LT.XMIN.OR.XSAV.LT.XMIN.OR.
                                                                       1224
    1 X.GT.XMAX.OP.XSAV.GT.XMAX) XCFF=.TRUE.
                                                                       1225
     IF (Y.LT.YMIN.OR.YSAV.LT.YMIN.OR.
                                                                       1226
    1 Y.GT.YMAX.OR.YSAV.GT.YMAX) YOFF=.TRUE.
                                                                       1227
                                                                       1228
  DETERMINE IF OFF TOP/BOTTOM/RIGHT/OR LEFT SIDE OF PLOTTER
                                                                       1229
                                                                       1230
     IF (X-LT-XMIN-OR-XSAV-LT-XMIN) XLIMIT=XMIN
                                                                       1231
     IF (X.GT.XMAX.DR.XSAV.GT.XMAX) XLIMIT=XMAX
                                                                       1232
     IF (Y.LT.YMIN.OR.YSAV.LT.YMIN) YLIMIT=YMIN
                                                                       1233
     IF (Y.GT.YMAX.OR.YSAV.GT.YMAX) YLIMIT=YMAX
                                                                       1234
C
                                                                       1235
  GET X AND Y POINTS DEPENDING ON WHAT BOUNDARIES OVER
                                                                       1236
                                                                       1237
     IF (XCFF) YTEMP=YINTCP(X,Y,XSAV,YSAV,XLIMIT)
                                                                       1238
     IF (.NOT.XOFF) YTEMP=YLIMIT
                                                                       1239
     IF (YOFF) XTEMP=XINTCP(X,Y,XSAV,YSAV,YLIMIT)
                                                                       1240
     IF (.NOT.YOFF) XTEMP=XLIMIT
                                                                       1241
C
                                                                       1242
                                                                       1243
  MOVE PEN UP TO THAT SPOT
                                                                       1244
     CALL PLOT(XTEMP/YTEMP/3)
                                                                       1245
     IPEN=2
                                                                       1246
     RETURN
                                                                       1247
     END
                                                                       1248
```

```
SUBROUTINE PRIELR
                                                                            1249
С
                                                                            1250
С
                                                                            1251
   THIS SUBROUTINE PROJECTS ELLIPSOIDS ONTO THE PROJECTION PLANE.
                                                                            1252
C
                                                                            1253
С
    ************
                                                                            1254
     COMMON/ELLIPSE/NSTEPS(90), IELP, A(3,3,30), SEGLP(3,90), VP(3),
                                                                            1255
     *D(3,3,90),DVP(3,3),RA(3),NSE6
                                                                            1256
      COMMON/POLYGON/NPLANE/IFLAG/NPPP(9G)/PO(3,4,60)/P(3,4,60)/
                                                                         1257
     *CONVEC(2,4,90),203(2,90),SIGN(90)
                                                                            1258
      DIMENSION DD(3,3),DDD(3,3),SS(3),S(3)
                                                                            1259
      DIMENSION R(3,3), R2(2,3)
                                                                            1260
      REAL LAMDA1, LAMDA2, M1, M2
                                                                            1251
     IF(NSES .EQ. 0) RETURN
DO 100 I=1,NSEG
                                                                            1262
                                                                            1263
      CALL DOTT(D(1,1,1),DVP,DD,3,3,3)
                                                                            1264
     CALL MAT(A(1,1,1),DD,DDD,3,3,3,3,3,3)
                                                                            1265
                                                                           1266
                                                                            1267
     DO 10 K=1.3
                                                                            1268
  10 SS(K) = SEGLP(K,I) - VP(K)
                                                                            1269
      CALL MAT(DVP/SS/S/3/3/1/3/3/3)
                                                                            1270
      DO 3C II=1.3
                                                                            1271
     IF (S(II).EQ.0.0) S(II)=1.0
                                                                            1272
30
     CONTINUE
                                                                            1273
C
                                                                            1274
      CALL SOLVR(DDD(1,1),DDD(2,1),DDD(3,1),DDD(1,3),DDD(2,3),DDD(3,3),
                                                                            1275
     *DDD(1,1),DDD(1,3),S,R(1,1),R(3,1))
                                                                            1275
     CALL SOLVR(DDD(1,2),DDD(2,2),DDD(3,2),DDD(1,3),DDD(2,3),DDD(3,3),
                                                                            1277
     *DDD(2,2),DDD(2,3),S,R(2,2),R(3,2))
                                                                            1278
     CALL SOLVR(DDD(1,1)+DDD(1,2),DDD(2,1)+DDD(2,2),DDD(3,1)+DDD(3,2),
                                                                            1279
     *DDD(1/3),DDD(2/3),DDD(3/3),DDD(1/1)+2.U*DDD(1/2)+DDD(2/2),
                                                                            1280
     *DDD(1,3)+DDD(2,3),S,R(1,3),R(3,3))
                                                                            1281
      R(2,1)=0.0
                                                                            1232
      R(1,2)=0.0
                                                                            1283
      R(2/3)=R(1/3)
                                                                            1284
      00 15 IK=1.3
                                                                            1235
      DO 15 IJ=1,2
                                                                           1286
  15 R2(IJ_{I}K) = (S(IJ_{I}) + R(IJ_{I}K))/(S(3) + R(3_{I}K)) - S(IJ_{I})/S(3)
                                                                           1287
      CALL SOLVA(R2,A11,A22,A12)
                                                                            1288
      TEMP=(A11+A22)**2-4.0*(A11*A22-A12**2)
                                                                            1239
      O.C=9MPT (0.0.TEMP=0.0
                                                                            1290
      TEMP=SQRT(TEMP)
                                                                            1291
      LAMDA1=(A11+A22+TEMP)/2.0
                                                                            1292
     LAMDA2=(A11+A22-TEMP)/2.0
                                                                            1293
      RX1=A12
                                                                            1294
      RY1=LAMDA1-A11
                                                                            1295
      RX2=LAMDA2-A22
                                                                            1296
      RY2=A12
                                                                            1297
      LAMDA1=ABS(LAMDA1)
                                                                            1298
      LAMDA2=ABS(LAMDA2)
                                                                            1299
      M1=SQRT(1.0/(LAMDA1*(RX1**2+RY1**2)))
                                                                            1300
      M2=SGRT(1.0/(LAMDA2*(RX2**2+RY2**2)))
                                                                            1301
      RX1 = RX1 * M1
                                                                            1302
      RX2=RX2*M2
                                                                            1303
      RY1=RY1*M1
                                                                            1304
      RY2=RY2+M2
                                                                            1305
      CONVEC(1,1,1)=-2.0*RX1
                                                                            1305
      CONVEC(2,1,I) = -2.0*RY1
                                                                            1307
      CONVEC(1,2,1)=-2.0*RX2
                                                                            1308
      CONVEC(2,2,1)=-2.0*RY2
                                                                            1309
      DO 20 IJ=1,2
                                                                            1310
```

$CONVEC(IJ_2J_1) = -CONVEC(IJ_2J_1)$	1311
CONVEC(IJ,4,I) = -CONVEC(IJ,2,I)	1312
$20 \text{ POS}(IJ_1) = \text{CONVEC}(IJ_2,I)/2.0 + \text{CONVEC}(IJ_4,I)/2.0+S(IJ)/S(3)$	1313
NPPP(I)=4	1314
SIGN(I)=CONVEC(1,1,I)+CONVEC(2,2,I)-	1315
1CONVEC(2,1,1)*CONVEC(1,2,1)	1316
100 CONTINUE	1317
RETURN	1318
END	1319

```
SUBROUTINE PRIPLY
                                                                            1320
                                                                            1321
        **********
                                                                            1322
C
                                                                            1323
        THIS SUBROUTINE WILL SETUP THE CONVEC ARRAY.
                                                                            1324
C
C
        IT ALSO SETS UP THE POS AND SIGN ARRAYS.
                                                                            1325
C
                                                                            1326
          ARRAY P IS THE ORIGINAL POSITION VECTORS FOR THE POLYGONS
С
                                                                            1327
           IN THE INERTIAL REFERENCE SYSTEM.
C
                                                                            1328
           ARRAY CONVEC WILL CONTAIN THE CONTOUR VECTORS
C
                                                                            1329
C
           FOR PROJECTED POLYGONS.
                                                                            1330
           ARRAY POS WILL CONTAIN POSITION VECTORS FROM THE
C
                                                                            1331
           PROJECTION PLANE ORIGIN TO POLYGON POINT # 1.
C
                                                                            1332
           APRAY SIGN WILL CONTAIN THE SIGN THAT RESULTS FROM
C
                                                                            1333
           THE CROSS PRODUCT (P2-P1)X(P3-P2).
C
                                                                            1334
                                                                            1335
c
        **********
                                                                            1336
     COMMON/POLYGON/NPLANE/IFLAG/NPPP(90)/PO(3/4/60)/P(3/4/60)/
                                                                            1337
     *CONVEC(2,4,90),PCS(2,90),SIGN(90)
                                                                            1333
     COMMON/ELLIPSE/NSTEPS(90), IELP, A(3,3,30), SEGLP(3,90), VP(3),
                                                                            1337
     *D(3,3,90),DVP(3,3),RA(3),NSEG
                                                                            1340
     DIMENSION PPP2(3), PP2(3), PP1(3)
                                                                            1341
      IF(NPLANE.EQ.O) RETURN
                                                                            1342
     DO 40 I=1. NPLANE
                                                                            1343
      II = I + 30
                                                                            1344
     NPTS=NPPP(II)
                                                                            1345
      DO 35 K=1,NPTS
                                                                            1346
     DO 10 J=1.3
                                                                            1347
     PPP2(J)=P(J,K,I)-VP(J)
                                                                            1348
  10 CONTINUE
                                                                            1349
     CALL MAT(DVP,PPP2,PP2,3,3,1,3,3,3)
                                                                            1350
      IF(K.NE.1) GO TO 16
                                                                            1351
     00 15 J=1.2
                                                                            1352
     PGS(J/II)=PP2(J)/PP2(3)
                                                                            1353
   15 CONTINUE
                                                                            1354
     GO TO 25
                                                                            1355
   16 DO 20 J=1,2
                                                                            1356
  20 CONVEC(J,K-1,II) = PP2(J)/PP2(3)-PP1(J)/PP1(3)
                                                                            1357
   25 DO 30 J=1.3
                                                                            1358
  3G PP1(J) = PP2(J)
                                                                            1359
     IF(K.Eq.3) SIGN(II) = CONVEC(1,1,II) * CONVEC(2,2,II) =
                                                                            1360
    1CONVEC(2,1,11) *CONVEC(1,2,11)
                                                                            1361
  35 CONTINUE
                                                                            1362
      00 40 J=1/2
                                                                            1363
      CONVEC(J, NPTS, II) = POS(J, II) - PP2(J)/PP2(3)
                                                                            1364
   40 CONTINUE
                                                                            1365
      RETURN
                                                                            1366
      END
                                                                            1367
```

~	SUBFOUTINE PSE(X1/IN/SEG/INDEX/INDEX2/IHALF) DIMENSION X1(3/INDEX/INDEX)/IN(INDEX)/SEG(3/3333)	1363 1369 1370
-	THIS SUBROUTINE PLOTS A SEMIELLIPSOID.	1371
-	THE HALF OF THE ELLIPSOID PLOTTED DEPENDS UPON IHALF.	1371
-	IF IHALF = 1 X .GE. 0 IS PLOTTED.	1373
-	IF IMALE = 2 X LT. 0 IS PLOTTED.	1374
-	DO 100 I=IHALF, INDEX	1374
		1375
	LINE=INDEX-I+1	1375
	IF(IHALF.E2.2) LINE=I	,
	NPTS=IN(LINE)	1378
	00 50 K=1, NPTS	1379 1320
	00 50 J=1,3	1381
	SEG(J,K)=X1(J,K,LINE)	
	IF(IHALF.EQ.2.AND.J.EQ.1) SEG(J,K)=-SEG(J,K)	1332
20	CONTINUE	1333
	N=NPTS	1384
	IF(LINE.EQ.INDEX) GO TO 71 NPT=NPTS-1	1335
•	00 60 K=1,NPT	1386
	KK=NPT-K+1	1337
	N=N+1	1338
		1339
	SEG(1/N)=SEG(1/KK)	1390
	SEG(2,N) = SEG(2,KK)	1391
00	SEG(3,N)=-SEG(3,KK)	1392
	NPT=N-1	1393
	D3 73 K=1,NPT	1394
	KK=NPT-K+1	1395
	N=N+1	1396
	SEG(1/N)=SEG(1/KK)	1397
-	SEG(2,N)=-SEG(2, <k)< td=""><td>1398</td></k)<>	1398
	SEG(3/N)=SEG(3/KK)	1399
<i>t</i> 1	IPEN=3	1400
400	CALL PNTPLT(SEG/IPEN/INDEX2/N)	1401
100	CONTINUE	1402
	RETURN	1403
	END	1494

```
SUBROUTINE ROT(A, L, TH, M)
                                                                                    1405
                                                              REV 01 08/10/72
                                                                                    1406
      COMPUTES ROTATION MATRIX A FOR ANGLE TH
                                                                                    1407
000
      ABOUT X/Y OR Z AXIS AS L = 1/2/ OR 3.
                                                                                    1408
                                                                                    1409
                                                                                    1410
C
        ARGUMENTS:
          A: 3x3 ROTATION MATRIX TO BE COMPUTED.
                                                                                    1411
c
          L: 1,2 OR 3 TO ROTATE ABOUT X,Y OR Z AXIS.
                                                                                    1412
Ç
          THE ANGLE OF ROTATION IN RADIANS.
ME 1ST DIMENSION OF A IN CALLING PROGRAM.
C
                                                                                    1413
                                                                                    1414
Ç
                                                                                    1415
                                                                                    1416
      DIMENSION A(M>3)
                                                                                    1417
      C= CCS(TH)
      S= SIN(TH)
                                                                                    1418
      IF (L.EQ.2) S = -S
DO 30 I=1,3
                                                                                    1419
                                                                                    1420
      IF(I.EQ.3)30 TO 20
                                                                                    1421
      DO 10 J=I,2
                                                                                    1422
      A(I,J+1)=0.0
                                                                                    1423
      A(J+1,I)=0.0
                                                                                    1424
      IF(I+J+L.NE.5)G0 TO 10
                                                                                    1425
                                                                                    1426
      A(I/J+1)=S
      A(J+1/I)=-S
                                                                                    1427
   10 CONTINUE
                                                                                    1423
   2G A(I/I) = C
                                                                                    1429
      IF(I.EQ.L)A(I,I)=1.0
                                                                                    1430
   30 CONTINUE
                                                                                    1431
      RETURN
                                                                                    1432
      END
                                                                                    1433
```

SUBROUTINE SOLVA(R/AA11/AA22/AA12)	1434
DIMENSION R(2,3)	1435
A11=P(1,1)**2	1436
A12=2.0*8(2/1)*8(1/1)	1437
A13=R(2,1)**2	1438
A21=8(1,2)**2	1439
A22=2.0*R(2,2)*R(1,2)	1440
A23=2(2,2)**2	1441
A31=R(1/3)**2	1442
A32=2.0*R(2,3)*R(1,3)	1443
A33=R(2,3)**2	1444
DEL=A11*(A22*A35-A23*A32)-A12*(A21*A33-A23*A31)+	1445
1A13*(A21*A32-A22*A31)	1446
AA11=((A22-A12)*(A33-A23)-(A23-A13)*(A32-A22))/DEL	1447
AA12=((A23-A13)*(A31-A21)-(A21-A11)*(A33-A23))/DEL	1448
AA22=((A21-A11)*(A32-A22)-(A22-A12)*(A31-A21))/DEL	1449
RETURN	1450
END	1451

	SUBROUTINE SOLVR(A1/A2/A3/A4/A5/A6/A7/A3/P/RX/RZ)	1452
2		1453
:	*****	1454
-		1455
:	THIS SUPROUTINE WILL SOLVE A SET OF SIMULTANEOUS EQUATIONS	1456
Ē	TO FIND COMPONETS OF VECTOR R THAT SATISFY THE PROPERTIES NEEDED	1457
-	TO DETURMINE THE EQUATION OF THE PROJECTED ELLIPSE.	1458
-		1459
-	SEE WRITEUP.	1460
-	022 # 12.20.2	1461
	*****	1462
•	DIMENSION P(3)	1453
	B=A1*P(1)+A2*P(2)+A3*P(3)	1464
	D=A4*P(1)+A5*P(2)+A6*P(3)	1455
	T1=A7*(D/3)**2+A6-Z.G*A3*D/B	1456
	T2=2.0*A7*0/(8)**2=2.0*A8/B	1467
	T3=47*(1/E)**2-1	1458
	RZ=(-T2+SQRT(T2+*2-4.0*T1*T3))/(2.0*T1)	1459
	RX=-D*RZ/3-1.0/8	1470
	RETURN	1470
	··-·	
	FND	1472

	SUBPOUTINE TITLE	1473
	DIMENSION ID(10/23)/ICOLOR(21)	1474
	COMMON/DBUG/IDEBUG(30)/NISG/DEVFLG/ONLINE/TERM/BDRS/OFLINE	1475
	INTEGER ONLINE, DEVFLG, TERM, SDRS, OFLINE	1476
	NLINE=28	1477
	SIZE=.335	1478
	X=1.375	1479
	Y=10.0	1430
•		1421
3	INITIALIZE PLOTTING PACKAGE	1482
:		1423
	CALL PLOT(0.0,0.0,-3)	1484
	READ(5,1) NERME	1485
1	FORMAT(12)	1435
	IF(NFRME_EQ.O) RETURN	1437
	DO 300 K=1,NFRME	1489
	00 50 I=1.NLINE	1489
	READ(5,200) (ID(J,I),J=1,8),ICOLOR(I)	1490
	WRITE(6,200) (ID(J,I),J=1,8),ICCL0R(I)	1491
200	FGRMAT (7A4,A2,I2)	1492
50	CONTINUE	1493
	DO 13C I=1.NLINE	1494
	Y=Y5	1495
	IF(DEVFLG.EQ.OFLINE.OR.DEVFLG.EQ.9DRS) CALL NEWPEN(ICOLOP(I))	1496
	CALL SYMBOL(X,Y,SIZE,ID(1,I),Q.,33)	1497
100	CONTINUE	1498
	IF(DEVFLG.EQ.ONLINE) CALL PLOT(12./0./-3)	1499
	IF(DEVFLG.EQ.TERM) CALL PLOT(0.0/0.0/-3)	1500
	IF(DEVFLG.EQ.BDRS) CALL NFRAME	1501
	IF(DEVFLG.EG.OFLINE) CALL PLOT (14.,0.,-3)	1502
300	CONTINUE	1503
	RETURN	1504
	END	1505

			4534
		SUBPOUTINE TPOINT(PP2/I/IN)	1506
		DIMENSION P22(3)/R(3)/P21(3)	1507
		COMMON/POLYGON/NPLANE/IFLAG/NPPP(90)/PO(3/4/60)/P(3/4/60)/	1508
		*CONVEC(2,4,90),POS(2,90),SIGN(90)	1539
:			1510
:		PART OF TOPE OF THE NO TRICK A STREET BRITHOREUS SIFT	1511
:		DEFINED BY PP2 AGAINST A POLYGON ON THE PROJECTION PLANE	1512
:		DEFINED BY I. A FLAG 'IN' IS RETURNED TO INDICATE IF THE	1513
-		POINT WAS INSIDE OR OUTSIDE THE POLYGON.	1514
:			1515
-		IN = 1 POINT WAS INSIDE POLYGON	1516
-		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1517
_		IN = 2 POINT WAS OUTSIDE POLYGON	1518
_		IN - 2 F51N1 W45 0013152 F52130N	1519
•		IN=1	1523
		NPTS1=NPPP(I)	1521
		DO 20 JJ=1/2	
	20		1522
	20	PP1(JJ)=POS(JJ,I)	1523
		DO 100 L=1/NPTS1	1524
		DO 30 N=1/2	1525
	30	R(N)=PP2(N)-PP1(N)	1526
		SIGN2=CONVEC(1,L,I)*R(2)-CONVEC(2,L,I)*R(1)	1527
		IF(SIGN2*SIGN(I) .LT. G.) GO TO 150	1528
		IF(ABS(SIGNZ*SIGN(I)).LT.1.E-11) GO TO 150	1529
		00 100 N=1,2	1530
	100	PP1(N)=PP1(N)+CONVEC(N/L/I)	1531
		RETURN	1532
	150	IN=2	1533
		RETURN	1534
		END	1535

	SUBROUTINE TRANSI(R/P)	1536
	COMMON/ELLIPSE/NSTEPS(90),IELP/A(3,3,30)/SEGLP(3,90)/VP(3)/	1537
	*D(3,3,90),DVP(3,3),RA(3),NSEG	1533
	CDMMON/VIEWP/VPO(3),59VPO(3,3),IVP,VP2(3)	1539
	DIMENSION DD(3,3),P(3),A(3),R2(3),SEGLP2(3)	1540
	IF(IELP .GT. 30) GO TO 10	1541
	CALL DOTT(DVP/D(1/1/IELP)/D0/3/3/3)	1542
20	CONTINUE	1543
	CALL MAT(DD/R/R2/3/3/1/3/3/3)	1544
	CALL MAT(DVP/SEGLP(1/IELP)/SEGLP2/3/3/1/3/3/3)	1545
	DO 1 I=1.3	1546
1	P(I)=SEGLP2(I)+R2(I)-VP2(I)	1547
	RETURN	1548
10	DO 11 I=1,3	1549
	00 11 J=1,3	1550
11	DD(I,J) = DVP(I,J)	1551
	GO TO 20	1552
	END	1553

	REAL FUNCTION XINTOP(X,Y,XSAV,YSAV,YTEMP)	1554
C	******	1555
C		1556
С	THIS FUNCTION CALCULATES THE X INTERCEPT AT YTEMP	1557
0		1558
:	*******	1559
	X1 = X - X S A V	1560
	Y1=Y-YSAV	1561
	IF (Y1.WE.O.O) PFACTR=X1/Y1	1562
	IF (Y1.EQ.J.O) PFACTR=0.0	1563
	Y 2 = Y T EMP - Y S A V	1554
	XINTCP=Y2*PFACTP+XSAV	1565
	RETURN	1565
	END	1547

SUBRIGHT ME XIZ(MOVANDNENSYMNOFERAN	1
DIMENSION MU(3),3(3),M(3,2)	1
TEAL MAMU	1
	1
***********	1
	1
ALPHA AND BETA RELATE THE Y AND Z COMPONENTS OF M TO	1
THE X COMPONENT OF M.	i
**************	i
**************	1
A 2017 - MUCCO / MUCCO	
ALPHA = MU(2) / MU(1)	1
BETA = MU(3) / MU(1)	1
	1
****************	1
	1
SOLVE THE EQUATION FOR ELLIPSE "N" TO FIND A POINT ON	1
THE ELLIPSE THAT WILL DETERMINE A VECTOR M.	. 1
	1
**********	1
	1
T1=A+0*ALPHA*ALPHA+C*BETA*9ETA	1
T2=2*A*S(1)+2*3*ALPHA*S(2)+2*C*3ETA*S(3)	1
T3=A*S(1)**2+B*S(2)**2+C*S(3)**2-1	i
TEMP= T2 * T2 + 4 * T1 * T3	i
TERM - 12 - 12 - 4 - 11 - 13	1
***********	1
NO COLUMNO MENNO SILENDONO INI NOT TOUCHED ON LINE OF	1
NO SOLUTION MEANS ELLIPSOID "N" NOT TOUCHED BY LIKE OF	1
SIGHT RAY.	1
	1
*******************	1
	1
IF(TEMP.LT.0.0) GO TO 2	1
TEMP=SQRT(TEMP)	1
	1
***************	1
	1
FIND TWO POSSIBLE M VECTORS BECAUSE A RAY ENTERING A	1
SOLID YUST ALSO LEAVE.	1
	1
********	1
	1
M(1,1)=(T2+TEMP)/(2*T1)	i
M(2/1)=ALPHA*M(1/1)	1
M(3,1)=SETA*M(1,1)	1
M(3/1/-3E1X***(1/1/ M(1/2)=(T2-TEMP)/(2*T1)	1
M(2/2)=ALMA*M(1/2)	1
M(3,2)=BETA*M(1,2)	1
JFLAG=0	1
RETURN	1
2 JFLAS=1	1
RETURN	1
END	1

	REAL FUNCTION YINTOP(X,Y,XSAV,YSAV,XTEMP)	1621
2	****	1622
0		1623
-	THIS FUNCTION CALCULATES THE Y INTERCEPT AT XTEMP	1624
2		1625
2		1626
	Λ1=X-X3AV	1627
	Y1=Y-YSAV	1623
	IF (X1.NE.O.O) PFACTP=Y1/X1	1629
	IF (X1.50.0.0) PFACTR=0.0	1630
	X2=XTEMP-YSAV	. 1531
	YINTCP=X2+PFACTR+YSAV	1632
	RETURN	1633
	FND	1634

	SUBPOUTINE YZ(MU/A/B/C/S/M/JFLAG)	1635
	DIMENSION MU(3)/S(3)/K(3/2)	1636
	REAL MUZM	1637
С	**********	1638
С		1639
C	ALPHA PELATES THE Z COMPONET TO THE Y COMPONET	1640
С		1641
2	*******	1642
	ALPHA=MU(3)/MU(2)	1643
ε	******	1644
C		1645
ε	SOLVE THE EQUATION FOR ELLIPSE "N" WHEN X=0 TO	1646
С С	FIND A POINT ON THE ELLIPSE THAT WILL DETERMINE A VECTOR M.	1647
С		1648
ε	******	1649
	T1=9+C*ALPHA*ALPHA	1650
	T2=2*3*\$(2)+2*C*ALPHA*\$(3)	1651
	T5=A+S(1)++2+3+S(2)++2+C+S(3)++2-1	1652
	TEXP=I2*I2-4*T1*T3	1653
٥	*******	1654
2		1655
Č	NO SOLUTION MEANS ELLIPSOID "N" NOT TOUCHED BY LINE	1656
č	OF SIGHT RAY.	1657
Č		1658
Ċ	*******	1659
•	IF(TEMP.LT.O.O) GO TO 2	1660
	TEMPESSAT(TEMP)	1661
C	*****	1562
Č		1663
Ċ	FIND TWO POSSIBLE M VECTORS BECAUSE A RAY ENTERING	1564
č	A SCLID MUST ALSO LEAVE.	1665
Č		1665
č	********	1667
-	$M(2/1) = (T2 + TEMP)/(2 \times T1)$	1663
	M(1,1)=0.0	1569
	M(3/1)=ALPHA*M(2/1)	1670
	M(2,2) = (T2 - TEMP)/(2 * T1)	1671
	M(1,2)=0.0	1672
	M(3/2)=ALPHA*M(2/2)	1673
	JFLAG=0	1674
	RETURN	1675
	2 JFLAS=1	1676
	RETURN	1677
	TAID	4.70

	SUBROUTINE Z(MU/A/B/C/S/M/JFLAG)	1679
	SIMENSION MU(3)/S(3)/M(3/2)	1630
	REAL MAMU	1631
:	*******	1682
2		1683
2	SOLVE THE EQUATION FOR ELLIPSE "N" WHEN X=0 AND	1634
:	TART BEGLLAR OF THE BULLES OF COLD	1635
:	WILL DETERMINE A VECTOR M.	1686
		1637
2	********	1683
	T1=C	1689
	T2=2*C*5(3)	1690
	T3=4*S(1)**2+3*S(2)**2+;*S(3)**2-1	1691
	TEMP=T2*T2-4*T1*T3	1692
ī	**********	1693
30000		1694
2	NO SCLUTION MEANS ELLIPSOID "N" NOT TOUCHED BY LINE	1695
τ	OF SIGHT RAY.	1696
C		1697
2	*******	1698
	IF(TEMP.LT.O.O) GO TO 2	1599
	TEMP=SQRT(TEMP)	1700
C	******	1701
C		1702
С	FIND TWO POSSIBLE M VECTOPS BECAUSE A RAY ENTERING	1703
0	A SCLID MUST ALSO LEAVE.	1794
C		1705
С	***********	1796
	M(1/1)=0.0	1707
	4(2,1)=0.0	1703
	%(3,1)=(T2+TEMP)/(2*T1)	1709
	M(1/2)=0.0	1710
	M(2/2)=0.0	1711
	M(3/2)=(T2-TEMP)/(2*T1)	1712
	JFLAG=O	1713
	RETURN	1714
	2 JFL48=1	1715
	RETURN	1716
	END	4747

APPENDIX A HIDDEN LINE PROBLEM BETWEEN TWO ELLIPSOIDS

Ellipsoids are plotted as a set of contour lines. These lines consist of a series of short vectors that are sequentially plotted to form a contour line. The hidden line problem can be reduced to the problem of finding what vectors are hidden from the viewpoint. This problem can be broken down further if it is assumed that each vector is short enough that only the point representing the head of the vector needs to be checked; thus the problem reduces to checking points to see if they are hidden from the viewpoint. Figure A.1 shows the coordinate systems and vectors used to solve the hidden point problem. The following equations are used to solve the hidden point problem using ellipsoids.

$$\overrightarrow{P_{21}} = [D_1] \overrightarrow{P_2}$$

$$\overrightarrow{P_{11}} = [D_1] \overrightarrow{P_1}$$

$$\overrightarrow{r_{21}} = [D_1] [D_2]^{\mathsf{T}} \overrightarrow{r_2}$$

$$\overrightarrow{S} - \overrightarrow{r_{21}} - \overrightarrow{P_{21}} + \overrightarrow{P_{11}} = 0$$

$$\vec{S} = \overrightarrow{P_{21}} + \overrightarrow{r_{21}} - \overrightarrow{P_{11}}$$

$$\vec{S}_{\text{in ellipsoid No. 1 system}} = [D_1] (\overrightarrow{P_2}) + [D_1] [D_2]^{\mathsf{T}} \overrightarrow{r_2} - [D_1] \overrightarrow{P_1}$$

$$\overrightarrow{VP_1} = [D_1] \overrightarrow{VP}$$

Figure A.1 Coordinate Systems and Vectors Used to Solve the Hidden Line Problem

$$\overrightarrow{V} - \overrightarrow{VP_1} + \overrightarrow{P_{11}} = 0$$

$$\overrightarrow{V} = \overrightarrow{VP_1} - \overrightarrow{P_{11}}$$

$$\vec{V}_{in \text{ ellipsoid No. 1 system}} = [D_1] \vec{VP} - [D_1] \vec{P_1}$$

$$\vec{P} + \vec{M} = \vec{S} - \vec{V}$$

$$\overrightarrow{r_1} = \overrightarrow{S} - \overrightarrow{M}$$

$$\overrightarrow{r_1} = \overrightarrow{S} - \overrightarrow{M} \qquad \overrightarrow{r_1} = \overrightarrow{V} + \overrightarrow{P}$$

using the ellipsoid equation

$$\vec{r} \cdot [A] \vec{r} = 1$$

$$\vec{r}^{\mathsf{T}}$$
 [A] $\vec{r} = 1$

$$\vec{r}^{T} [A] \vec{r} = 1$$

$$(\vec{S} - \vec{M})^{T} [A] (\vec{S} - \vec{M}) = 1 \qquad A = \begin{bmatrix} \frac{1}{a^{2}} & 0 & 0 \\ 0 & \frac{1}{b^{2}} & 0 \\ 0 & 0 & \frac{1}{c^{2}} \end{bmatrix}$$

$$S = \begin{bmatrix} S_1 \\ S_2 \\ S_3 \end{bmatrix} \qquad M = \begin{bmatrix} M_1 \\ M_2 \\ M_3 \end{bmatrix}$$

Since \vec{P} and \vec{M} are in the same direction, \vec{P} + \vec{M} is also in the same direction, then a unit vector in the direction of M can be obtained from

$$\rightarrow$$
 \rightarrow \rightarrow \rightarrow $P + M = S - V$

therefore

$$\begin{pmatrix} \frac{S_1 - V_1}{MAG} \\ \frac{S_2 - V_2}{MAG} \\ \frac{S_3 - V_3}{MAG} \end{pmatrix} = \hat{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix}$$

where

MAG =
$$[(S_1 - V_1)^2 + (S_2 - V_2)^2 + (S_3 - V_3)^2]^{1/2}$$

giving $\hat{\mu}$ in the direction of M must obey the following relationship.

$$\frac{\mu_1}{\mu_2} = \frac{M_1}{M_2}$$
 $\frac{\mu_1}{\mu_3} = \frac{M_1}{M_3}$

$$M_2 = M_1 \frac{\mu_2}{\mu_1} = M_{1\alpha}$$
 $M_3 = M_1 \frac{\mu_3}{\mu_1} = M_{1\beta}$

back to

$$(\vec{S} - \vec{M}) [A] (\vec{S} - \vec{M}) = 1$$

$$S - M = \begin{pmatrix} S_1 = M_1 \\ S_2 = \alpha M_1 \\ S_3 - \beta M_1 \end{pmatrix}$$

therefore

$$(\vec{S} - \vec{M})^T$$
 [A] $(\vec{S} - \vec{M}) = 1$

expands to

$$\frac{1}{a^2} (S_1 - M_1)^2 + \frac{1}{b^2} (S_2 - \alpha M_1)^2 + \frac{1}{c^2} (S_3 - \beta M_1)^2 = 1$$

let

$$A = \frac{1}{a^2}$$
 $B = \frac{1}{b^2}$ $C = \frac{1}{c^2}$

$$A(S_1 - M_1)^2 + B(S_2 - \alpha M_1)^2 + C(S_3 - \beta M_1)^2 = 1$$

$$AS_1^2 + AM_1^2 - 2AS_1M_1 + BS_2^2 + B\alpha^2M_1^2 = 2BS_2\alpha M_1 + CS_3^2 + C\beta^2M_1^2 - 2C\beta S_3M_1 = 1$$

$$(A + B\alpha^2 + C\beta^2) M_1^2 - (2AS_1 + 2BS_2 + 2C\beta S_3) M_1 + AS_1^2 + BS_2^2 + CS_3^2 - 1 = 0$$

let

$$T_1 = A + B\alpha^2 + C\beta^2$$

$$T_2 = - (2AS_1 + 2BS_2\alpha + 2C\beta S_3)$$

$$T_3 = AS_22 + BS_2^2 + CS_3^2 -1$$

$$M_1 = \frac{-T_2 \pm \sqrt{T_2^2 - 4T_1T_3}}{2T_1}$$

only $T_2{}^2$ - $4T_1T_3$ must be evaluated to test for M_1 on the ellipsoid.

If M_1 is real, then M is given by

$$\vec{M} = \begin{pmatrix} M_1 \\ \alpha M_1 \\ \beta M_1 \end{pmatrix}$$

$$\vec{P} = \vec{S} - \vec{V} - \vec{M}$$

If there is a real $\stackrel{\rightarrow}{M}$, then it must be determined if both $\stackrel{\rightarrow}{M}$ s are in the opposite direction of $\stackrel{\rightarrow}{P}$.

Case No. 1--if both $\vec{M}s$ are in the opposite direction of \vec{P} , then the point is not hidden.

Case No. 2--if either \vec{M} is in the same direction as \vec{P} , then the point is hidden.

Using the dot product to determine the relative directions of \vec{M} and \vec{P} gives

 $\vec{P} \cdot \vec{M} = \langle 0 \rangle$, the point is not hidden.

$$\vec{P} = \vec{S} - \vec{V} - \vec{M}$$

$$(S_1 - V_1 - M_1, S_2 - V_2 - M_2, S_3 - V_3 - M_3)$$

$$\vec{P} \cdot \vec{M} = S_1 M_1 - V_1 M_1 - M_1 M_1$$

$$+ S_2 M_2 - V_2 M_2 - M_2 M_2$$

$$+ S_3 M_3 - V_3 M_3 - M_3 M_3$$

If $|\vec{M}|$ is close to zero, the points on each ellipsoid are very close together, and it is not necessary to hide the point on the contour vector.

If μ_1 equals zero, then an α and β cannot be found with the given expressions. Therefore, the following cases must be examined.

Case No. 1

$$\mu_{1} = 0 \qquad \mu_{2} = 0$$

$$M_{1} = 0$$

$$M_{2} = 0$$

$$(\vec{S} - \vec{M})^{T} A (\vec{S} - \vec{M}) = 1$$

$$\vec{S} - \vec{M} = \begin{pmatrix} S_{1} \\ S_{2} \\ S^{3} - M^{3} \end{pmatrix}$$

$$AS_1^2 + BS_2^2 + C (S_3 - M_3)^2 = 1$$

$$AS_1^2 + BS_2^2 + CS_3^2 + CM_3^2 - 2SC_3M_3 = 1$$

T1 = C

 $T2 = -2CS_3$

$$T3 = AS_1^2 + BS_2^2 + CS_3^2 - 1$$

Use these T values back in the quadratic formula used earlier.

Case No. 2

$$\mu_1 = 0$$
 $\mu_2 \neq 0$

$$\mu_2 \neq 0$$

$$M_1 = 0$$

$$\vec{S} - \vec{M} = \begin{pmatrix} S_1 \\ S_2 - M_2 \\ S_3 - M_3 \end{pmatrix} \qquad \frac{M_3}{M_2} = \frac{\mu_3}{\mu_2} \qquad \alpha = \frac{\mu_3}{\mu_2}$$

$$M_3 = \alpha M_2$$

$$AS_1^2 + BS_2^2 + BM_2^2 = 2BS_2M_2 + CS_3^2 + C\alpha^2M_2^2 - 2C\alpha M_2S_2 = 1$$

$$T1 = B + C\alpha^2$$

$$T2 = 2BS_2 - 2C\alpha S_3$$

$$T3 = AS_1^2 + BS_2^2 + CS_3^2 - 1$$

Use these T values in the quadratic formula and proceed.

APPENDIX B DISCUSSION OF EQUATIONS USED BY PRJELR

PRJELR stands for project ellipsoid routine. The function of PRJELR is to circumscribe a projected shadow of an ellipsoid with a rectangle. The resulting rectangle is used as a polygon by the overlap routines to determine what objects overlap after they are projected.

GENERAL APPROACH

- Assume that all ellipsoids project an elliptical shadow. This
 is a good assumption when the viewpoint is far away from all
 objects and the viewpoint Z axis is nearly directly pointed at
 all ellipsoids.
- 2. Find three radial vectors of the ellipsoid pointing to a surface point that forms the contour of the projected shadow. Add three further conditions—one radial vector is in the X-Z plane of the viewpoint coordinate system, another radial vector is in the Y-Z plane of the viewpoint coordinate system, and one radial vector is in the X = Y and Z plane of the viewpoint coordinate system. These planes are defined as if the viewpoint coordinate system were at the center of the ellipse. This gives three radial vectors as indicated in Figure B.1, $\overrightarrow{r_1}$, $\overrightarrow{r_2}$, $\overrightarrow{r_3}$.
- 3. Project all three vectors onto the projection plane and solve for an ellipse matrix.
- 4. Circumscribe the resulting ellipse with a rectangle.

Take [A(3,3)] ellipsoid matrix and transform to [A'(3,3)] in the viewpoint coordinate system.

 $A' = [DVP] [D]^T [A] [D] [DVP]^T$

SLICE OF ELLIPSOID IN THE X=Y Z PLANE

Figure B.1. Three Radial Vectors

where

[DVP] = direction cosine matrix that transforms from the inertial to the viewpoint frame of reference.

and

[D] = direction cosine matrix that transforms from the inertial to the ellipsoid frame of reference.

Find the following three vectors

$$\vec{r} = \begin{pmatrix} r_x \\ 0 \\ r_z \end{pmatrix} \qquad \vec{r} = \begin{pmatrix} 0 \\ r_y \\ r_z \end{pmatrix} \qquad \vec{r} = \begin{pmatrix} r_x \\ r_y \\ r_z \end{pmatrix} \qquad r_x = r_y$$

that also have the properties of being radial vectors defined by \underline{A}' and that the associated vector \vec{P} from the viewpoint to the tip of \vec{r} is normal to the normal vector for the point defined by \vec{r} on the ellipsoid. See Figure 9.

$$\vec{n} \cdot \vec{P} = 0 \qquad \qquad r^{T}\underline{A}'r = 1$$

$$\underline{A}'\dot{r} \cdot \dot{\vec{p}} = \vec{p} \cdot \underline{A}'\dot{r} = 0 \qquad \qquad \vec{p} = \vec{S}\vec{S} + \vec{r}$$

$$(\overrightarrow{SS} + \overrightarrow{r})^{\mathsf{T}} \underline{A}^{\mathsf{T}} \overrightarrow{r} = 0$$

$$\overrightarrow{SS}^{T}\underline{A}'\overrightarrow{r} + \overrightarrow{r}^{T}\underline{A}'\overrightarrow{r} = 0 \qquad \overrightarrow{r}^{T}\underline{A}'\overrightarrow{r} = 1$$

$$\overrightarrow{SS}^{\mathsf{T}}\underline{\mathsf{A}}'\overrightarrow{\mathsf{r}} = -1$$

This is the equation that subroutine SOLVR uses to return components for \overrightarrow{r} that represent $\overrightarrow{r_1}$, $\overrightarrow{r_2}$, $\overrightarrow{r_3}$.

Let

Case No. 1 be
$$\overrightarrow{r_1}$$

Case No. 2 be
$$\overrightarrow{r_2}$$

Case No. 3 be
$$\overrightarrow{r_3}$$

in all three cases

$$(SS_{\chi}, SS_{\gamma}, SS_{Z}) \begin{pmatrix} A'_{11} & A'_{12} & A'_{13} \\ A'_{21} & A'_{22} & A'_{23} \\ A'_{31} & A'_{32} & A'_{33} \end{pmatrix} \qquad r = -1$$

expanding the left hand part gives

$$(SS_{\chi}A'_{11} + SS_{\gamma}A'_{21} + SS_{\zeta}A'_{31}, SS_{\chi}A'_{12} + SS_{\gamma}A'_{22} + SS_{\zeta}A'_{32}$$

 $SS_{\chi}A'_{13} + SS_{\gamma}A'_{23} + SS_{\zeta}A'_{33}) \quad r = -1$

With each case of r the expression reduces to

$$(\alpha_1SS_X + \alpha_2SS_Y + \alpha_3SS_Z) r_{X/Y} + (\alpha_4SS_X + \alpha_5SS_Y + \alpha_6SS_Z) r_Z = -1$$

$$\alpha_4 = A_{13}$$

$$\alpha_5 = A'_{23}$$
 true for all cases

$$\alpha_6 = A'_{33}$$

Case No. 1 Case No. 2 Case No. 3
$$\alpha_1 = A'_{11}$$
 $\alpha_1 = A'_{12}$ $\alpha_1 = A'_{11} + A'_{12}$ $\alpha_2 = A'_{21}$ $\alpha_2 = A'_{22}$ $\alpha_3 = A'_{31}$ $\alpha_3 = A'_{32}$ $\alpha_3 = A'_{31} + A'_{32}$

Making another substitution, let

$$\beta_1 = (\alpha_1 SS_{\chi} + \alpha_2 SS_{\gamma} + \alpha_3 SS_{\chi})$$

$$\beta_2 = (\alpha_4 SS_{\chi} + \alpha_5 SS_{\gamma} + \alpha_6 SS_{Z})$$

Then $r_{\chi/\gamma}$ can be solved for by the following equation

$$r_{X/Y} = -\frac{\beta_2}{\beta_1} r_Z - \frac{1}{\beta_1}$$

now $\overrightarrow{r_1}$, $\overrightarrow{r_2}$, and $\overrightarrow{r_3}$ is written

$$r_{1}^{+} = \begin{pmatrix} -\frac{\beta_{2}}{\beta_{1}} & r_{Z} - \frac{1}{\beta_{1}} \\ 0 & r_{Z} \end{pmatrix}$$

$$r_{2}^{\uparrow} = \begin{pmatrix} 0 \\ -\frac{\beta_{2}}{\beta_{1}} r_{Z} - \frac{1}{\beta_{1}} \\ r_{Z} \\ -\frac{\beta_{2}}{\beta_{1}} r_{Z} - \frac{1}{\beta_{1}} \end{pmatrix}$$

$$r_{3}^{+} = \begin{pmatrix} -\frac{\beta}{\beta_{1}} r_{Z} - \frac{1}{\beta_{1}} \\ r_{Z} \end{pmatrix}$$

Since

$$\dot{r}^{T}\underline{A}'\dot{r} = 1$$

 r_Z can be found for any one of the three cases, if the above expression is expanded, the following general form results.

$$\gamma_1 r_{X/Y}^2 + \gamma_2 r_{X/Y} r_Z + \gamma_3 r_Z^2 = 1$$

Case No. 1

$$\gamma_1 = A'_{11}$$

$$\gamma_1 = A'_{11}$$
 $\gamma_2 = 2A'_{13}$ $\gamma_3 = A'_{33}$

Case No. 2

$$\gamma_1 = A'_{22}$$

$$\gamma_1 = A'_{22}$$
 $\gamma_2 = 2A'_{23}$ $\gamma_3 = A'_{33}$

$$\gamma_3 = A'_{33}$$

Case No. 3

$$\gamma_1 = A'_{11} + 2A'_{12} + A'_{22}$$
 $\gamma_2 = 2(A'_{13} + A'_{23})$ $\gamma_3 = A'_{33}$

$$\gamma_2 = 2(A'_{13} + A'_{23})$$

$$\gamma_3 = A'_{33}$$

now by substituting

$$r_{X/Y} = -\frac{\beta_2}{\beta_1} r_Z - \frac{1}{\beta_1}$$

results in the following expression

$$\gamma_1 - \left(\frac{\beta_1}{\beta_1} r_Z - \frac{1}{\beta_1}\right)^2 + \gamma_2 - \frac{\beta_2}{\beta_1} r_Z - \frac{1}{\beta_1} r_Z = \gamma_3 r_Z^2 = 1$$

expanding and combining like terms yields

$$\gamma_1 \left(\frac{\beta_2}{\beta_1}\right)^2 + \gamma_3 \qquad \gamma_2 \frac{\beta_2}{\beta_1} r_{\mathbb{Z}^2} + 2\gamma \frac{\beta_2}{\beta_1^2} - \gamma \frac{1}{\beta_1}$$

$$\left(r_{\mathbb{Z}} + \gamma_1 \frac{1}{\beta_1}\right)^2 - 1 = 0$$

Let the coefficients for the terms r_Z^2 , r_Z , and constant term be represented by T1, 5T2, and T3, respectively.

$$r_Z = -\frac{T_2 \pm T_2^2 - (4T1T3)^{1/2}}{2T1}$$

$$r_{Z/Y} = -\frac{\beta_2}{\beta_1} r_Z - \frac{\beta_2}{\beta_1}$$

Values for \mathbf{r}_χ , \mathbf{r}_γ , and \mathbf{r}_Z can be obtained depending upon what case is being solved.

SOLVR subroutine will return vector components for any of the three cases.

Definition of call to SOLVR subroutine

CALL SOLVR $(A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8, SS, R1, R3)$

Case No. 1	Case No. 2	Case No. 3
A ₁ = A' ₁₁	A ₁ = A' ₁₂	A ₁ = A' ₁₁ + A' ₁₂
A ₂ = A' ₂₁	A ₂ = A' ₂₂	A ₂ = A' ₂₁ + A' ₂₂
A ₃ = A' ₃₁	A ₃ = A' ₃₂	$A_3 = A_{31} + A_{32}$
A4 = A'13	A4 = A' ₁₃	A ₄ = A' ₁₃
A ₅ = A' ₂₃	A ₅ = A' ₂₃	A ₅ = A ₁₂₃
A ₆ = A' ₃₃	A ₆ = A' ₃₃	A ₆ ,= A' ₃₃

$$A_7 = A_{11}$$
 $A_7 = A_{22}$
 $A_8 = A_{13}$
 $A_8 = A_{23}$
 $A_8 = A_{13} + A_{123}$
 $A_8 =$

of ra

After SOLVR constructs all three cases for vector \overrightarrow{r} , these three vectors are used to find an ellipse matrix [a] on the projection plane. The properties of the three \overrightarrow{r} vectors are such that they satisfy the three-dimensional ellipsoid and when projected satisfy the ellipse on the projection plane.

of ro

Also the properties are such that the coefficients of the ellipse matrix can be found. This is accomplished by SOLVA subroutine.

Projection of \overrightarrow{r} onto the Projection Plane

of r₁

$$\overrightarrow{r'} = \overrightarrow{\rho'} - \overrightarrow{S'} \overrightarrow{\rho} = \left(\frac{S_X + r_X}{S_X + r_Z}, \frac{S_Y + r_Y}{S_Z + r_Z}\right)$$

$$\overrightarrow{S'} = \left(\frac{S_X}{S_Z}, \frac{S_Y}{S_Z}\right)$$

$$\overrightarrow{r'} = \left(\frac{S_X + r_X}{S_Z + r_Z} - \frac{S_X}{S_Z}, \frac{S_Y + S_Y}{S_Z + r_Z} - \frac{S_Y}{S_Z}\right)$$

$$r'^{T}\underline{a}r' = 1$$
 [a] = $\begin{pmatrix} a_{11} & a_{12} \\ & & \\ a_{21} & a_{22} \end{pmatrix}$

Since there are three r^{\dagger} vectors and only three of the four components of [a] are independent, the components of [a] are obtained by solving three equations simultaneously in subroutine SOLVA. SOLVA returns the components of [a].

To circumscribe the ellipse with a rectangle, the major and minor axis vectors must be found. These vectors are found by solving for the eigenvectors of [a].

$$a\vec{r}$$
 = $\lambda \vec{r}$

This condition is true only for the vectors that represent the major and minor axis of the ellipse.

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \qquad \begin{pmatrix} r_{\chi} \\ r_{\gamma} \end{pmatrix} = \lambda \begin{pmatrix} r_{\chi} \\ r_{\gamma} \end{pmatrix}$$

$$\begin{pmatrix} a_{11}r_{\chi} + a_{12}r_{\gamma} \\ a_{12}r_{\chi} + a_{22}r_{\gamma} \end{pmatrix} = \begin{pmatrix} \lambda r_{\chi} \\ \lambda r_{\gamma} \end{pmatrix}$$

$$\lambda r_{\chi} - a_{11}r_{\chi} - a_{12}r_{\gamma} = 0$$

$$\lambda r_{y} - a_{12}r_{\chi} - a_{22}r_{\gamma} = 0$$

 $(\lambda - a_{11}) r_{\chi} - a_{12}r_{\gamma} = 0$ [1]

$$(\lambda - a_{22}) r_{\gamma} - a_{12}r_{\chi} = 0$$
 [2]

The only way No. 1 and No. 2 can be zero is if

$$\overrightarrow{r_1} = \begin{pmatrix} a_{12} \\ \\ \lambda_1 - a_{11} \end{pmatrix} = \begin{pmatrix} r_{\chi} \\ \\ r_{\gamma} \end{pmatrix}$$

$$\overrightarrow{r_2} = \begin{pmatrix} \lambda_2 - a_{22} \\ a_{12} \end{pmatrix} = \begin{pmatrix} r_{\chi} \\ r_{\gamma} \end{pmatrix}$$

These are the major and minor axes vectors.

These vectors must also satisfy the ellipse equation

$$a\dot{r} = \lambda \dot{r}$$

$$r^{T}ar = 1$$

$$r^{T}\lambda r = 1$$

since λ is a scalar

$$\lambda_r^{\uparrow \uparrow} = 1$$

$$\lambda_{x}^{2} + \lambda_{y}^{2} = \frac{1}{\lambda}$$

$$|r_1|^2 = \frac{1}{\lambda}$$

Both eigenvalues can be found by solving

$$\begin{vmatrix} \lambda - a_{11} & -a_{12} \\ -a_{12} & \lambda - a_{22} \end{vmatrix} = 0$$

$$\lambda = \frac{a_{11} + a_{22} \pm [(a_{11} + a_{22})^2 - 4(a_{11}a_{22} - a_{12}^2)]^{1/2}}{2}$$

Using these two eigenvalues, $\overrightarrow{r_1}$ and $\overrightarrow{r_2}$ are determined and must be normalized by the relation

$$|\overrightarrow{r_1}|^2 = \frac{1}{\lambda}$$

These equations are used to circumscribe the ellipse with a rectangle.

$$\vec{P_1} = \vec{r_1} + \vec{r_2}$$

$$\vec{P}_2 = -\vec{r}_1 + \vec{r}_2$$

1. 1. 1

$$P_3 = \overrightarrow{-r_1} - \overrightarrow{r_2}$$

$$P_4 = \overrightarrow{r_1} - \overrightarrow{r_2}$$

CONVEC (I,1,K) =
$$\overrightarrow{P_2}$$
 - $\overrightarrow{P_1}$ = $\overrightarrow{r_2}$ - $\overrightarrow{r_1}$ - $\overrightarrow{r_1}$ - $\overrightarrow{r_2}$ = $-2\overrightarrow{r_1}$

CONVEC (I,2,K) =
$$\overrightarrow{P_3}$$
 - $\overrightarrow{P_2}$ = $\overrightarrow{r_2}$ - $\overrightarrow{r_1}$ - $\overrightarrow{r_2}$ + $\overrightarrow{r_1}$ = $-2\overrightarrow{r_2}$

CONVEC (I,3,K) =
$$\overrightarrow{P_4}$$
 - $\overrightarrow{P_3}$ = $\overrightarrow{r_1}$ - $\overrightarrow{r_2}$ + $\overrightarrow{r_2}$ + $\overrightarrow{r_1}$ = $2\overrightarrow{r_1}$

CONVEC (I,4,K) =
$$\overrightarrow{P_1}$$
 - $\overrightarrow{P_4}$ = $\overrightarrow{r_1}$ + $\overrightarrow{r_2}$ - $\overrightarrow{r_1}$ + $\overrightarrow{r_2}$ = $2\overrightarrow{r_2}$

I = 1,2 for vectors on the projection plane

K is an ellipsoid number or polygon number.

APPENDIX C INTERSECTION OF A THREE SPACE VECTOR AND PLANE

Figure C.1 shows the typical vector problem that represents the intersection of a three-space vector and a plane. The problem is to determine if the intersection point lies along vector \vec{r} or beyond the tip of \vec{r} . The figure shows that if Tau is less than one, the intersection point lies between the two points VP and PT.

Tau is found with the following equations (where \hat{N} is the normal unit vector to the plane).

$$\hat{N} \cdot \vec{C} = 0$$
 $\hat{C} = \vec{r}\tau - \vec{P}$

$$\hat{N} \cdot (\dot{r}\tau - \dot{P}) = 0$$

$$\hat{N} \cdot \vec{r} - \hat{N} \cdot P = 0$$

$$\tau = \frac{\hat{N} \cdot \vec{\beta}}{\hat{N} \cdot \vec{\beta}}$$

 τ > 1 point is not blocked by the intersection point.

Figure C.1. Intersection of a Three Space Vector and a Plane

APPENDIX D INTERSECTION OF LINE SEGMENTS IN A PLANE

Given two line segments,

$$\overline{P_1P_2}$$
 and $\overline{P_3P_4}$

where

$$P_i = (x_i, y_i)$$

Consider all parallel lines to be nonintersecting.

The Regular Configuration -- Neither of the line segments is vertical.

The line which contains $\overline{P_1P_2}$ has the equation

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{y - y_1}{x - x_1}$$

which simplifies to

$$y = (x - x_1) m_1 + y_1$$

where

$$m_1 = \frac{y_2 - y_1}{x_2 - x_1}$$

Likewise the line containing $\overline{P_3P_4}$ has the equation

$$y = (x - x_3) m_2 + y_3$$

where

$$m_2 = \frac{y_4 - y_3}{x_4 - x_3}$$

Since at the point of intersection

$$P_0 = (x_0, y_0)$$

$$y_0 = (x_0 - x_1) m_1 + y_1$$

$$y_0 = (x_0 - x_3) m_2 + y_3$$

then equating and solving for xo yields

$$x_0 = \frac{y_3 - y_1 + m_1x_1 - m_2x_3}{m_1 - m_2}$$

To determine if the point of intersection of the two lines is on each line segment, note

$$P_0 \in P_i P_j \iff P_0 = P_i + t(P_j - P_i) \text{ for } 0 \le t \le 1$$

Then let

$$t = \frac{x_0 - x_1}{x_2 - x_1}$$

$$s = \frac{x_0 - x_3}{x_4 - x_3}$$

then if $0 \le t \le 1$ and $0 \le s \le 1$, there is intersection.

But, since we will say that the two segments do not intersect if the point of intersection is one of the endpoints, then if 0 < t < 1 and 0 < s < 1, there is intersection.

If one of the lines is vertical, the regular procedure will not work since there will be a zero denominator in one of the m_i 's. Therefore, provided the nonvertical segment is not horizontal, make the substitution

$$P_i' = y_i, x_i$$
 for each $P_i = (x_i, y_i)$

Using the P_i ' endpoints, the regular procedure will then determine if there is an intersection.

The only case not covered, so far, is the case where one segment is vertical and the other is horizontal. Without loss of generality, assume $\overline{P_1P_2}$ is vertical and $\overline{P_3P_4}$ is horizontal.

In this case

$$P_0 = (x_1, y_3)$$

$$(x_1, y_3) = (x_1, y_1) + t [(x_1, y_2) - (x_1, y_1)] \Rightarrow$$

$$t = \frac{y_3 - y_1}{y_2 - y_1}$$

likewise

$$[(x_1, y_3) = (x_3, y_3) + s (x_4, y_3) - (x_3, y_3)] \Rightarrow$$

$$s = \frac{x_1 - x_3}{x_4 - x_3}$$

then if 0 < t < 1 and 0 < a < 1, there is an intersection.