Application of Instant Crash Injury Risk Data to Assist Medical Treatment and Save Lives Professor Jeffrey Augenstein

VDI Symposium

8/3/11

US Opportunities for Reduced Casualties

Since January 2009

- 75,000 deaths from crash injuries
- 50% not transported to a medical facility
- Another 300,000 seriously injured

Presentation Overview

- Introduction of the WLIRC
- Current Status of 911 and ACN
- Opportunities for Highway Casualty Reduction using URGENCY
- Concepts for Using URGENCY
- Accuracy requirements for URGENCY
- Recent developments

The Ryder Trauma Center

- Largest Trauma Center in US
- Home of the William Lehman Injury Research Center (WLIRC)

William Lehman Injury Research Center

- William Lehman Injury Research Center (WLIRC)
 - Research team established in 1991
 - Trauma research group housed at the Ryder Trauma Center
 - Part of the Jackson Memorial Hospital in downtown Miami, FL
- Ryder Trauma Center
 - Level 1 Trauma Center
 - Over 3,000 admissions of seriously injured patients
 - Home to the Army Trauma Training Center
 - Extensive Research & Education Facility

WLIRC Research

- Research to date has focused on understanding common mechanisms of injury during motor vehicle crashes
- Identifying opportunities to improve vehicle safety and post crash care
- Pioneered research in Enhanced Automatic Crash Notification (eACN)

Crash Research at WLIRC

- William Lehman Injury Research Center team
 - Research has supported NHTSA R&D, Rulemaking (model center for NHTSA's CIREN Program)
 - Conducted evaluations of advanced safety issues for the automotive industry, tier 1 suppliers and other government entities
 - Ongoing partnership with BMW since 2001 to evaluate and improve ACN technology
- Multidisciplinary Approach to Crash Research
 - Clinical, Engineering, Biomechanics, Epidemiology, Social Work, Crash Investigation, and Computer Science

Study Personnel

- Jeffrey Augenstein, MD, PhD, Chief of Trauma
- Kennerly Digges, PhD, Research Director
- Carl Schulman, MD, Principal Investigator
- George Bahouth, D.Sc., Principal Investigator
- James Stratton, Crash Investigator
- Cindy Delgado, AIS

Presentation Overview

- Introduction of the WLIRC
- Current Status of 911 and ACN
- Opportunities for Highway Casualty Reduction using URGENCY
- Concepts for Using URGENCY
- Accuracy requirements for URGENCY
- Recent developments

The US 911 System

- 6,700 PSAPS in USA, 700 in Canada
- Less than 1% of calls motor vehicle related
- Information gathering procedure
 check lists that depend on the emergency
- Notification action determined by check list
- Check lists supplied by 2 agencies
 - Newest to revisions to include URGENCY

Issue with 1st Generation ACN

Many more crashes than crashes with injury Annual US numbers:

- 6,000,000 Crashes that trigger ACN
- 3,000,000 Crashes with any injury (50%)
- 250,000 AIS 2+ Injuries (4%)
- 80,000 AIS 3+ Injuries (1.3%)
- 35,000 Fatalities (0.6%)

Current Status of ACN

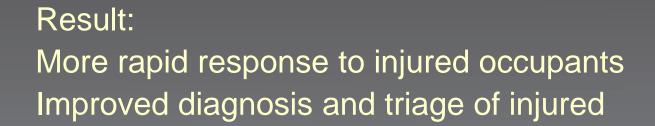
- Auto companies with ACN
 - Current- GM, BMW, Daimler, Ford, Rolls Royce
 - New-Toyota, Hyundai
- Most auto companies use built-in cell phones
- Ford uses customer's cell phone to call 911
- For Ford ACN, the customer's voice call goes directly to 911
- Except for Ford, the ACN call goes to a private Call Center
 - The Call Center talks to the customer and to 911
 - May also connect customer directly with 911
 - GM Centers are in Michigan, N Carolina and other locations (OnStar)
 - BMW and Toyota have Centers in Texas, Florida and Canada (ATX)
 - Daimler has a Center based in Atlanta (Hughes)
- eACN vehicles also send crash data to the Call Center

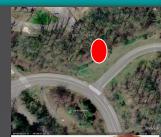
The Call Centers

- Call takers receive on-job training annually
- Call takers sign non-disclosure agreement to protect privacy of persons information
- Language skills include English, Spanish and French (Canada)
- Other languages accommodated through translation service provided by contract services such as AT&T
- Frequency of Calls:
 - 3 to 7 crash calls per year per 1,000 cars
 - Less than 1% of all calls to the Center are crash calls

Current Applicable Regulations

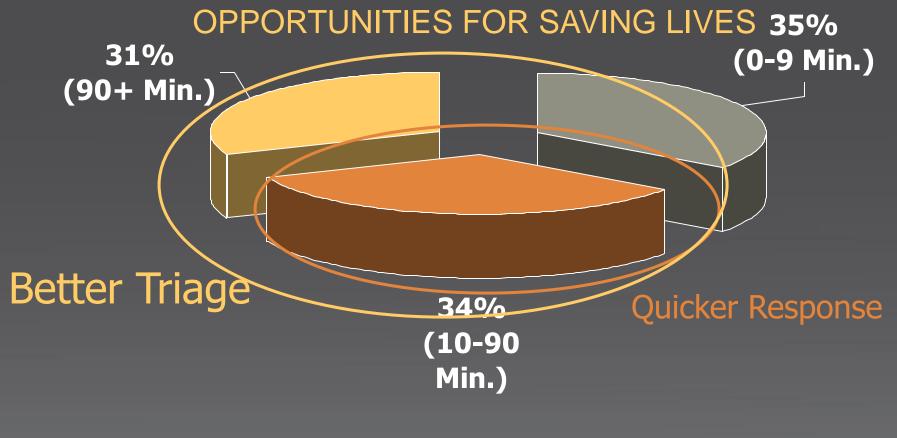
- Federal Rule Part 563 regulates Event Data Recorders (EDR) beginning Sep1, 2010
- EDR installation is voluntary
- If EDR installed, Part 563 sets standards for:
 - Accuracy, storage, survivability, retrievability
 - Minimum data set to be collected
 - Recommendations for additional data
- Follow-up rule to require EDR's is being considered by NHTSA


Presentation Overview


- Introduction of the WLIRC
- Current Status of 911 and ACN
- Opportunities for Highway Casualty Reduction using URGENCY
- Concepts for Using URGENCY
- Accuracy requirements for URGENCY
- Recent developments

Functions of eACN

- Provide geographic location of crashes with possible injuries
- Provide voice communication with vehicle occupants
- Provide data from vehicle sensors



Opportunities for Fatality Reduction

- Risk of Death Reduced by 25% for Accurate Triage and Timely Trauma Center Treatment (Mackenzie, New England Journal of Medicine, 2006)
- NHTSA Studies of Preventable Deaths:
 - 28.5% of all rural (DOT HS 807 973, 1992)
 - 27.6% of all rural (DOT HS 808 341, 1995)
 - 17% of all urban and rural (DOT HS 808 345, 1995)

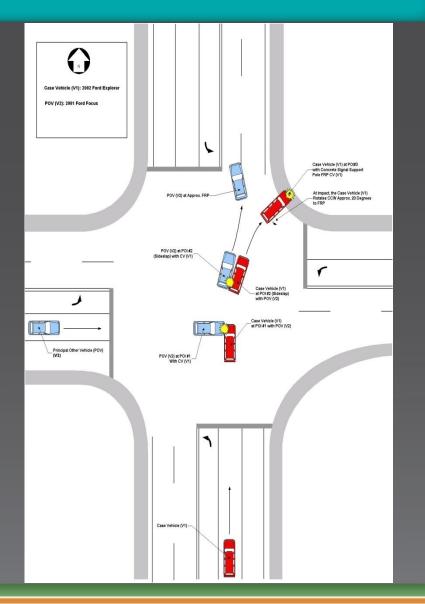
Fatalities by Time of Death After Crash

Minutes Post Crash

*Based on FARS 2001 Data

Benefits for Injured Occupants

- Rapid and Accurate Location Would Help:
 - people who die on scene who can be saved
 - people with time critical injuries but are treated too late
- Improved Triage Would Reduce the Number of:
 - People who are mis-diagnosed and poorly triaged to the wrong care facility
 - People who are improperly treated in the right hospital due to missed injuries
- Risk of Death Reduced by 25% for Accurate Triage and Timely Trauma Center Treatment (Mackenzie, New England Journal of Medicine, 2006)


Technology for Injured Occupants

- Rapid and Accurate Location :
 - Automatic Crash Notification of Crash Location (ACN)
- Improved Triage:
 - Enhanced Automatic Crash Notification using Vehicle Crash Data (eACN)
 - Use of URGENCY Algorithm to Instantly Predict the Probability of Serious Injury Presence

Example Case: Missed Injury

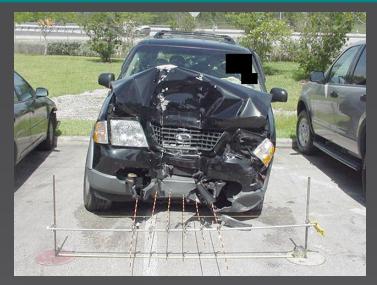
- 42 Year Old Female
- Passenger
- 2002 Ford Explorer XLT
- 12 O' clock PDOF (Primary Impact)
- deltaV 30 mph (48 kph)
- Side Slap Followed By Narrow Object Frontal (Multiple Impact Crash)


SCHOOL OF MEDICINE UNIVERSITY OF MIAM

Multiple Impact Frontal Crash

Driver Uninjured

Passenger:


- Lap & Shoulder Belt Worn
- Passenger Top Mount Airbag Deployed
- Did <u>Not</u> Meet Any Trauma Criteria On-Scene

Crash Environment

- Crash occurred 01:39 pm
- Upon Initial Treatment
 - Passenger Taken to local hospital
 - Sent home 5 hours later
 - Following CT Scan

Pre-Trauma Center Care

- 4 Days later, severe stomach cramping persisted
- Returned to local hospital for treatment and was immediately flown to Trauma Center

SCHOOL OF MEDICINE UNIVERSITY OF MIAMI

Occupant Injuries

Injuries:

- AIS 4 Perforation of Sigmoid Colon
- AIS 2 Denuding of Serosa at transverse colon
- AIS 2 Denuding of Serosa at distal jejunum
- Pelvic Abrasions
- Various Facial Contusions/Abrasions

URGENCY Score:

56% Risk of MAIS3+ Serious Injury

Crash Characteristics

- Multiple Impact Event
- Moderate Severity Fontal (30 MPH)
- Narrow Object Collision

Observations

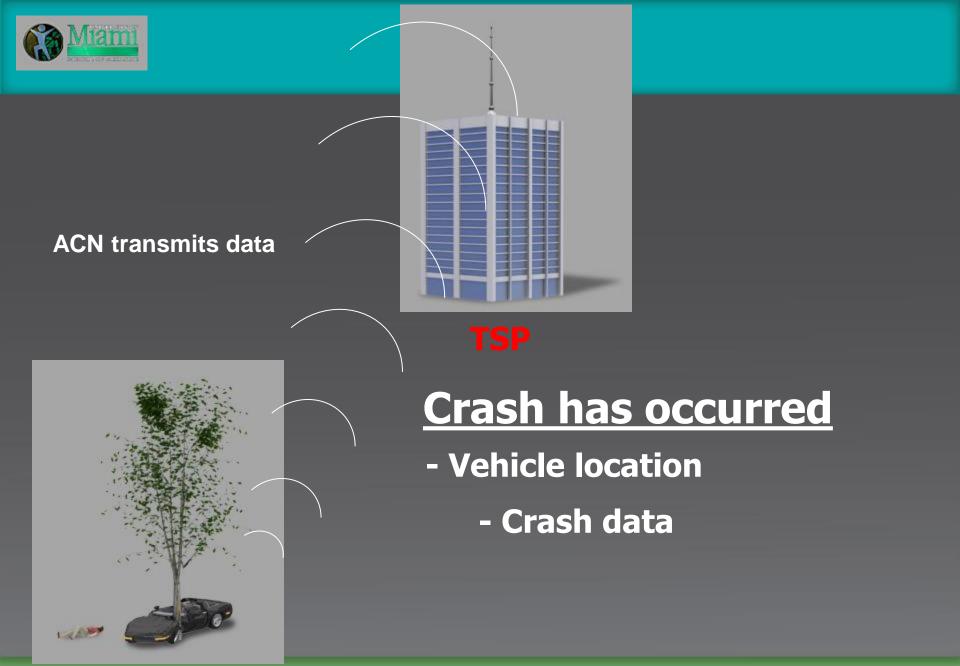
URGENCY predicted
 High Injury Risk

 If available and used, URGENCY could have prevented the unfavorable outcome

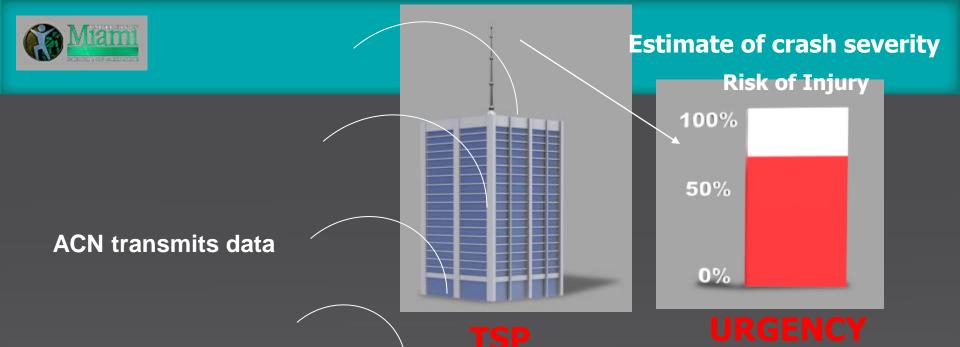
WILLIAM LEHMAN INJURY RESEARCH CENTER

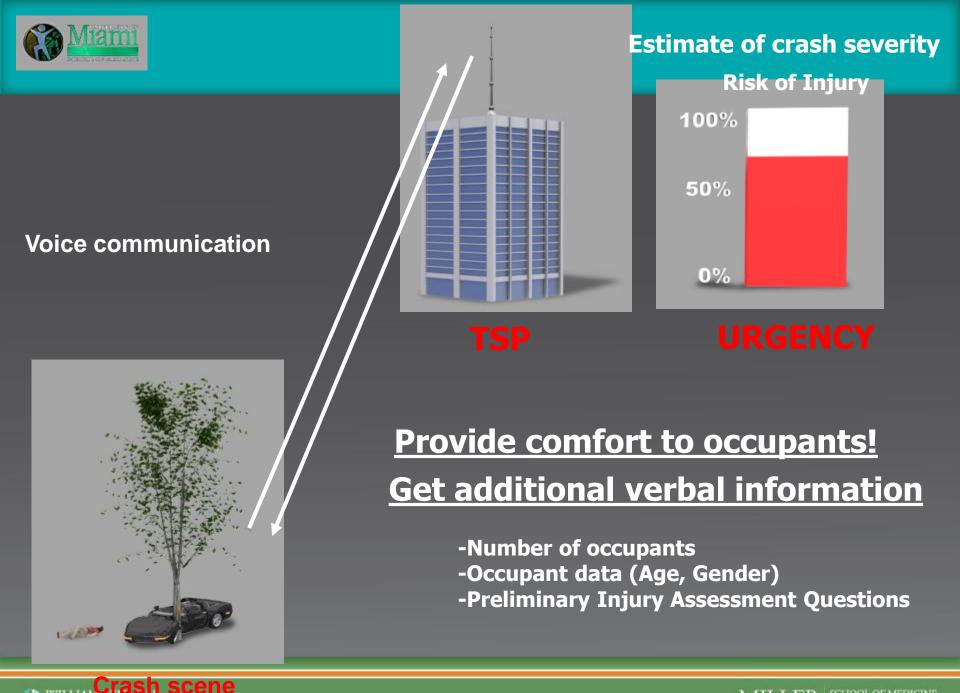
Presentation Overview

- Introduction of the WLIRC
- Current Status of 911 and ACN
- Opportunities for Highway Casualty Reduction using URGENCY
- Concepts for Using URGENCY
- Accuracy requirements for URGENCY
- Recent developments

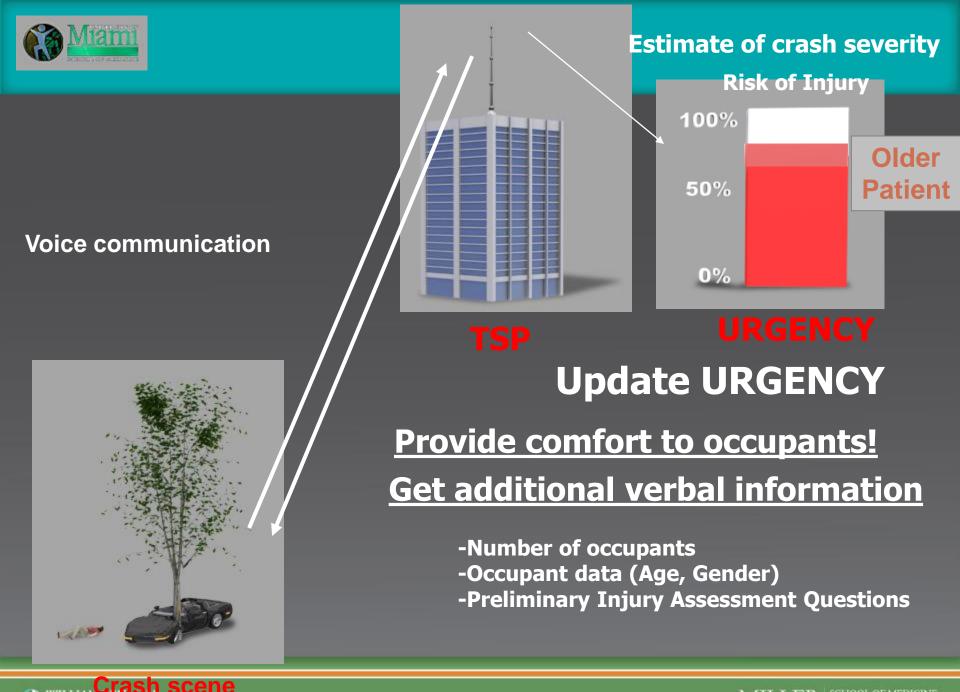


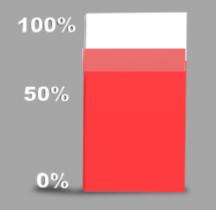
A Crash Occurs




Crash has occurred

- Vehicle location


- Crash data


MILLER SCHOOL OF MEDICINE UNIVERSITY OF MIAM

Estimate of crash severity

Risk of Injury

URGENCY

TSP Contacts Appropriate Rescue or Public Services

Voice Link between TSP and Rescue

Voice Link between occupant and rescue services

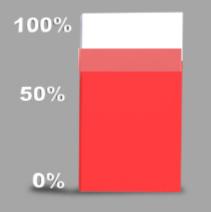
Voice communication

scene

Knowledge: What to expect

Voice communication

scene


TSP Contacts Appropriate Rescue or Public Services

Voice Link between TSP and Rescue

Voice Link between occupant and rescue services

Estimate of crash severity

Risk of Injury

URGENCY

Decision: What to send

Voice communication

scene

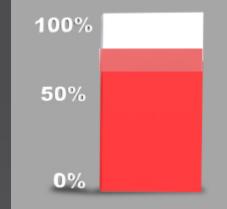
Voice Link between occupant and rescue services

Estimate of crash severity

Risk of Injury

URGENCY

TSP Contacts Appropriate Rescue or Public Services


Voice Link between TSP and Rescue

Estimate of crash severity

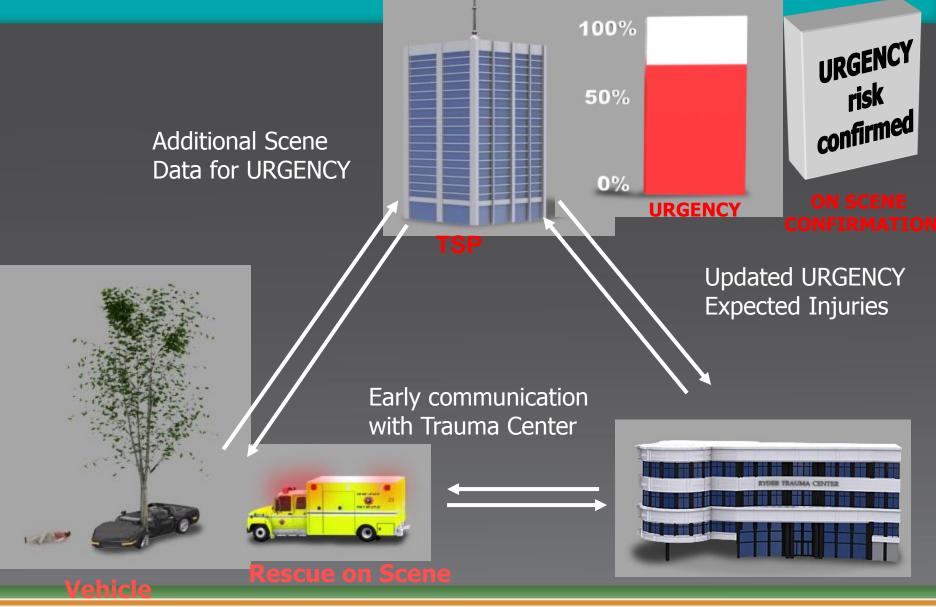
Risk of Injury

Voice communication

Vehicle

ISP

URGENCY


Scene Information

On-scene Evaluations Reduce False Positives

Confirm URGENCY risk

Rescue on Scene

WILLIAM LEHMAN

MILLER SCHOOL OF MEDICINE UNIVERSITY OF MIAMI

100% URGENCY As more crash risk data is collected, 50% confirmed better rescue decisions can be 0% made! to tansmit data hauma data Canta URGENCY Additional Scene Data for URGENCY

Early communication with Trauma Center

WILLIAM LEHMAN

Communication with the Trauma Center

MILLER SCHOOL OF MEDICINE UNIVERSITY OF MIAMI

URGENCY 56% HIGH RISK

Near side impact + elderly protocol R\O Aortic Injury

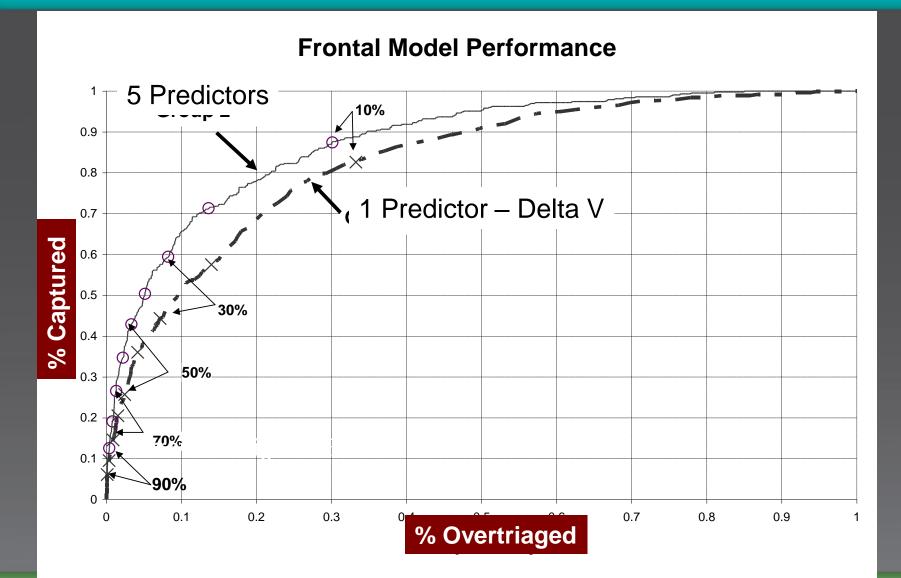
Knowledge of What to Expect

Presentation Overview

- Introduction of the WLIRC
- Current Status of 911 and ACN
- Opportunities for Highway Casualty Reduction using URGENCY
- Concepts for Using URGENCY
- Accuracy requirements for URGENCY
- Recent developments

Definition of Terms

- False negative Sensitivity The model fails to identify a case with a serious injury – Under Triage
- False positive Specificity The model identifies an uninjured case as having a serious injury- Over Triage
- Positive predictive value (PPV) Percent of positive values that are correctly identified
- Objective of the model minimize the false negatives without increasing the false positives Hold the PPV to less than .20 (1 in 5 correct)



URGENCY Predictive Performance

Crash (cut point)	Sensitivity	Specificity	PPV
Frontal (0.1)	0.5937	0.8824	0.2685
Nearside (0.05)	0.8394	0.7409	0.1920
Farside (0.05)	0.7383	0.9052	0.2079
Rear (0.05)	0.5206	0.9721	0.2353
Rollover (0.1)	0.4377	0.8967	0.2792

ROC Curve Showing Risk Thresholds

Presentation Overview

- Introduction of the WLIRC
- Current Status of 911 and ACN
- Opportunities for Highway Casualty Reduction using URGENCY
- Concepts for Using URGENCY
- Accuracy requirements for URGENCY
- Recent developments

Issues

- Privacy of crash and other personal data
- Implementation of eACN
 - Leadership of US Center for Disease Control (CDC)
- Benefits assessment

Privacy Issues

- Many current vehicles record crash event data onboard the vehicle (EDR)
 - Data belongs to the vehicle owner (NHTSA)
 - State laws may govern data access
 - Data can be accessed by legal action
- eACN is currently a service to the owner
 - Service agreement permits the transmission of data to the Call Center
- Government mandate of eACN would need to address privacy

CDC Leadership - Expert Panel

Participants in the CDC Panel Included:

Peter Baur – BMW Jeff Augenstein – WLIRC George Bahouth – WLIRC Ken Digges – WLIRC

Report published - 2009

WILLIAM LEHMAN

RECOMMENDATIONS FROM THE EXPERT PANEL: ADVANCED AUTOMATIC COLLISION NOTIFICATION AND TRIAGE OF THE INJURED PATIENT

- FREPARE VY THE--CENTERS FOR DISEASE CONTROL AND PREVENTION, MATIONAL CENTER FOR INJURY RESIDENTION AND CONTROL, DIVISION OF INJURY RESPONSE

-WITH SUPPORT FROM-OWSTAR, THE GENERAL MOTORS FOUNDATION, AND THE CDC FOUNDATION

MILLER SCHOOL OF MEDICINE UNIVERSITY OF MIAMI

5. DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention

Recommendations of CDC Expert Panel

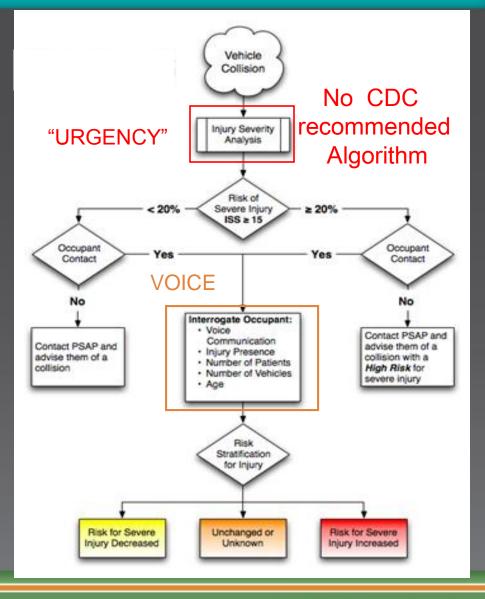
- Current eACN data can improve accuracy of triage.
- Use eACN data prediction to inform PSAP of high injury risk crashes

(Our interpretation – This technology will save lives - Use it NOW!)

Recommendations of CDC Expert Panel

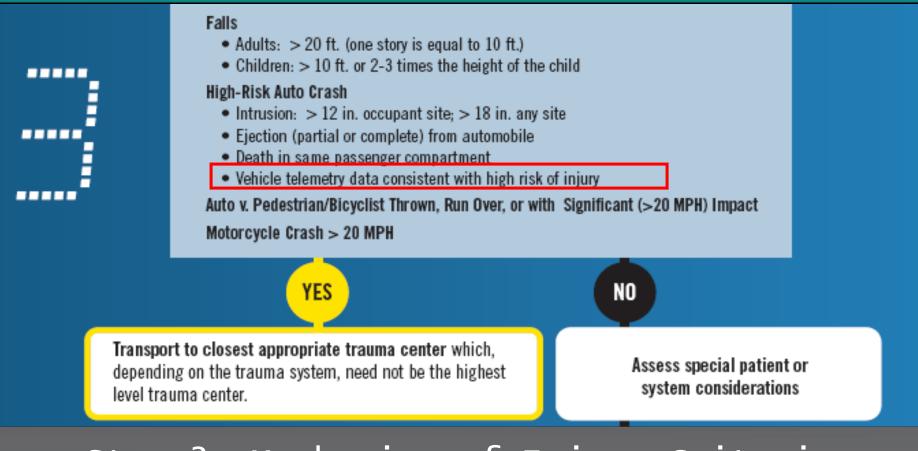
- Data to be transmitted
 - As recommended by BMW URGENCY Algorithm

- Voice communication data:
 - Age>54, Nr. of patients, Nr. of vehicles, Are there injuries?
- High Risk Criteria: Risk > 20% for [ISS]>15



Recommendations of CDC Expert Panel

eACN Protocol Recommended by CDC Committee


CONTROL AND PREVENTION

CDC Recommended Changes in Triage Criteria -

Step 3: Mechanism of Injury Criteria (Slide from CDC Presentation)

CDC Step 3: Triage Changes

Added

Vehicle telemetry data consistent with high risk of injury

OnStar Announcement May 20, 2009

- "OnStar Creates Injury Severity Prediction to Improve Automatic Crash Response"
 - "Based on findings of CDC expert panel which used OnStar data"

Impediments to the Use of eACN Technology

- A defined risk threshold for a "Severe Crash" – Acceptable over-triage and under-triage Solution: CDC Recommendations
- Lack of procedures for implementing eACN triage with 911 Solution: "Severe Crash" identification by voice call to 911
- A suitable demonstration of the efficacy of eACN Solution: Initial research at WLIRC to evaluate accuracy Follow-on research to assess benefits
- Lack of knowledge and advocacy of users

 911 (PSAP) and medical services

 Solutions: Revised check-lists for PSAP's

 Educational programs for medical services

The Next Steps

- Educational programs for medical services
- Implement CDC triage protocols for eACN

 Universal application of crash data in
 rescue/triage decisions

Incorporate in check lists at PSAP's

• Continued improvement and benefits assessment of URGENCY.

Questions??? and Discussion

